Return to search

On the spectrum of positive operators

Spectral theory, mathematical system theory, evolution equations, differential and difference equations [electronic resource] : 21st International Workshop on Operator Theory and Applications, Berlin, July 2010.It is known that lattice homomorphisms and G-solvable positive operators on Banach lattices have cyclic peripheral spectrum (See [17]). In my thesis I prove that positive contractions whose spectral radius is 1 on Banach lattices with increasing norm have cyclic peripheral point spectrum. I also prove that if the Banach lattice is a K B space satisfying the growth conditon and º is an eigenvalue of a positive contraction T such that [º] = 1, then 1 is also an eigenvalue of T as well as an eigenvalue of T¨, the dual of T. I also investigate the conditions on contraction operators on Hilbert lattices and AL-spaces which guanantee that 1 is an eigenvalue. As we know from [17], if T : E-E is a positive ideal irreducible operator on E such the r (T) = 1 is a pole of the resolvent R(º, T), then r (T) is simple pole with dimN (T -r(T)I) and ºper(T) is cyclic. Also all points of ºper(T) are simple poles of the resolvent R(º,T). SInce band irreducibility and º-order continuity do not imply ideal irreducibility [2], we prove the analogous results for band irreducible, º-order continuous operators. / by Cheban P. Acharya. / Thesis (Ph.D.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_4068
ContributorsAcharya, Cheban P., Charles E. Schmidt College of Science, Department of Mathematical Sciences
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeText, Electronic Thesis or Dissertation
Formatvi, 53 p. : ill., electronic
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0028 seconds