Return to search

Uma plataforma para sumarização automática de textos independente de idioma

Submitted by Isaac Francisco de Souza Dias (isaac.souzadias@ufpe.br) on 2016-01-22T17:09:48Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
lsc_tese_corrigida_rdl_versaoDigital.pdf: 5021349 bytes, checksum: f2a6ae799a13a092eef7727f6cc66e9e (MD5) / Made available in DSpace on 2016-01-22T17:09:48Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
lsc_tese_corrigida_rdl_versaoDigital.pdf: 5021349 bytes, checksum: f2a6ae799a13a092eef7727f6cc66e9e (MD5)
Previous issue date: 2015-02-27 / A Sumarização Automática de Textos é o ramo da área de recuperação de informação que utiliza técnicas e algoritmos para identificar e coletar ou gerar sentenças relevantes a partir de documentos textuais. Claramente, o uso de Processamento de Linguagem Natural (PLN) revela-se benéfico ao processo de sumarização, principalmente quando se processam documentos sem nenhuma estrutura e/ou padrão definido. Dentre as variações do processo de sumarização, as técnicas extrativas são as mais bem estudadas até o momento, em sua maioria suportando o idioma inglês, com poucas variações de suporte a mais um idioma. A presente tese propõe uma plataforma de sumarização multi-idioma na qual, fornece 17 opções de algoritmos de sumarização, assim como a possibilidade de combinação dentre eles. Tais algoritmos são uma mescla de técnicas de sumarização extrativa utilizando modelos estatísticos (e.g. TF-IDF) e modelos linguísticos (PLN com WordNet). Além disso, a plataforma é 100% não-supervisionada, o que significa que não depende do ser humano em nenhuma parte de seu processamento, ainda possui um módulo de identificação de idiomas além de um processo de tradução intermediária, os quais provêm suporte a 25 idiomas até o momento. Os resultados obtidos nos experimentos sugerem que a plataforma apresenta bons níveis de sumarização com corpora relacionados com textos jornalísticos (CNN e Temário) em diferentes idiomas (Inglês, Espanhol e Português). Efetuando uma comparação com métodos conhecidos, e.g. SuPor e TextRank, a plataforma obteve 45% de
melhoria nos resultados para o corpus Temário no idioma português, se manteve dentre os melhores com o corpus CNN em inglês e resultados semelhantes com o corpus CNN em espanhol, no qual é novo e não possui resultados de outros sistemas até o momento. Além desses resultados, o seu tempo processamento é competitivo, atingindo-se em média 0,11 segundos por documento em inglês e 0,28 s para outras línguas. Desenvolvida em Java, a plataforma pode ser facilmente portável e reusada em pesquisas futuras, as quais podem ser direcionadas para preencher a lacuna da sumarização abstrativa, a qual é pouco explorada até o momento pela comunidade, tendo assim, muito a ser estudada e pesquisada. / Automatic Text Summarization is the branch of information retrieval that uses techniques and algorithms to identify, collect or generate relevant sentences from text documents. The use of Natural Language Processing (NLP) techniques has proven to be beneficial to the summarization process, especially when processing unstructured documents. Extractive summarization techniques are the best studied to date, mostly supporting the English language, with a few variations to support another language. This thesis proposes a multi-language summarization platform which implements 17 algorithms, as well as the possibility of combining them. Such extractive summarization techniques are based on statistical models (e.g. TF-IDF) or language models (e.g. N.L.P. with WordNet). Furthermore, the platform is 100% unsupervised, this means that processing does not need human interference. There is a module for language identification and an intermediate translation process, in which provides support to 25 languages, so far. The experimental results obtained suggest that the platform reached acceptable summarization levels tested on news text corpora (CNN and Temário) in English, Spanish and Portuguese. Comparing with known methods, e.g. SuPor and TextRank, the platform obtained an improvement of 45% in the results for the TeMário corpus in Portuguese language remained among the best in the CNN corpus in English and similar results with the CNN corpus in Spanish, which is new and not have results of competitors yet. In addition to these results, its processing time is competitive,
reaching an average of 0.11 seconds per document in English and 0.28 for the other languages tested. The platform was developed in Java, thus it is portable and can be easily reused in future research in abstractive summarization, a research area still little explored.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/14968
Date27 February 2015
CreatorsCABRAL, Luciano de Souza
Contributorshttp://lattes.cnpq.br/7601016626256808, LINS, Rafael Dueire, FREITAS, Frederico Luiz Gonçalves de
PublisherUNIVERSIDADE FEDERAL DE PERNAMBUCO, Programa de Pos Graduacao em Engenharia Eletrica, UFPE, Brasil
Source SetsIBICT Brazilian ETDs
LanguageBreton
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE
RightsAttribution-NonCommercial-NoDerivs 3.0 Brazil, http://creativecommons.org/licenses/by-nc-nd/3.0/br/, info:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds