More cables will be installed owing to setting up more radio towers when it comes to 5G. However, a large proportion of radio units are constructed high in the open space, which makes it difficult for human technicians to maintain the systems. Under these circumstances, automatic detections of errors among radio cabinets are crucial. Cables and connectors are usually covered with weatherproofing tapes, and one of the most common problems is that the tapes are not closely rounded on the cables and connectors. This makes the tape go out of the cable and look like a waving flag, which may seriously damage the radio systems. The thesis aims at detecting this flagging-tape and addressing the issues. This thesis experiments two methods for object detection, the convolutional neural network as well as the OpenCV and image processing. The former uses YOLO (You Only Look Once) network for training and testing, while in the latter method, the connected component method is applied for the detection of big objects like the cables and line segment detector is responsible for the flagging-tape boundary extraction. Multiple parameters, structurally and functionally unique, were developed to find the most suitable way to meet the requirement. Furthermore, precision and recall are used to evaluate the performance of the system output quality, and in order to improve the requirements, larger experiments were performed using different parameters. The results show that the best way of detecting faulty weatherproofing is with the image processing method by which the recall is 71% and the precision reaches 60%. This method shows better performance than YOLO dealing with flagging-tape detection. The method shows the great potential of this kind of object detection, and a detailed discussion regarding the limitation is also presented in the thesis. / Fler kablar kommer att installeras på grund av installation av fler radiotorn när det gäller 5G. En stor del av radioenheterna är dock konstruerade högt i det öppna utrymmet, vilket gör det svårt för mänskliga tekniker att underhålla systemen. Under dessa omständigheter är automatiska upptäckter av fel bland radioskåp avgörande. Kablar och kontakter täcks vanligtvis med väderbeständiga band, och ett av de vanligaste problemen är att banden inte är rundade på kablarna och kontakterna. Detta gör att tejpen går ur kabeln och ser ut som en viftande flagga, vilket allvarligt kan skada radiosystemen. Avhandlingen syftar till att upptäcka detta flaggband och ta itu med frågorna. Den här avhandlingen experimenterar två metoder för objektdetektering, det invändiga neurala nätverket såväl som OpenCV och bildbehandling. Den förstnämnda använder YOLO (You Only Look Once) nätverk för träning och testning, medan i den senare metoden används den anslutna komponentmetoden för detektering av stora föremål som kablarna och linjesegmentdetektorn är ansvarig för utvinning av bandbandgränsen. Flera parametrar, strukturellt och funktionellt unika, utvecklades för att hitta det mest lämpliga sättet att uppfylla kravet. Dessutom används precision och återkallande för att utvärdera prestandan för systemutgångskvaliteten, och för att förbättra kraven utfördes större experiment med olika parametrar. Resultaten visar att det bästa sättet att upptäcka felaktigt väderbeständighet är med bildbehandlingsmetoden genom vilken återkallelsen är 71% och precisionen når 60%. Denna metod visar bättre prestanda än YOLO som hanterar markering av flaggband. Metoden visar den stora potentialen för denna typ av objektdetektering, och en detaljerad diskussion om begränsningen presenteras också i avhandlingen.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-272108 |
Date | January 2020 |
Creators | Sun, Ruiwen |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2020:38 |
Page generated in 0.0021 seconds