Lipid bilayers form the basis of the membranes that serve as a barrier between a cell and its physiological environment. Their physical properties make them ideally suited for this role: they are extremely soft with respect to bending but essentially incompressible under lateral tension, and they are quite permeable to water but essentially impermeable to ions which allows the rapid establishment of the osmotic gradients. The function of membrane proteins, which are vital for tasks ranging from signal transduction to energy conversion, depends on their interactions with the lipid environment. Because of the complexity of natural membranes, model systems consisting of simpler lipid mixtures have become indispensable tools in the study of membrane biophysics. The objective of the work reported here is to develop a deeper understanding of the underlying physics of lipid bilayers through nanoscale measurements of the mechanical properties of mixed lipid systems including cholesterol, a key ingredient of cell membranes. Atomic force microscopy (AFM) has been used extensively to measure the topographical and elastic properties of supported lipid bilayers displaying complex phase behaviour and containing mixtures of important PC, PE lipids and cholesterol. Phase transformations have been investigated varying the membrane temperature, and the effects of cholesterol in controlling membrane fluidity, phase, and energetics have been studied. Elastic modulus measurements were correlated with phase behaviour observations. To aid in the nanoscale probing of lipid bilayers, AFM probes with a high aspect ratio and tip radii of $sim$4~nm were fabricated and characterised. These probes were used to investigate the phase boundary in binary and ternary lipid systems, leading to the discovery of a raised region at the boundary which has implications for the localisation of reconstituted proteins as well as the role of natural domains or lipid rafts. The electrical properties of the probes were examined to assess their potential application for combined structural and electrical measurements in liquid. A novel technique was developed to aid in the study of the physical properties of lipid bilayers. Membrane budding was induced above microfabricated substrates through osmotic pressure. Modification of the adhesion energy of the bilayer through biotin-avidin linking was successful in modulating budding behaviour of liquid disordered bilayers. The free energy of the system was modelled to allow quantitative information to be extracted from the data.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:647630 |
Date | January 2014 |
Creators | Köcher, Paul Tilman |
Contributors | Ryan, John F. |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:0b478b9f-70fc-436f-9803-5d3a203f0d7e |
Page generated in 0.0022 seconds