Return to search

Electrical lithium-ion battery models based on recurrent neural networks: a holistic approach

As an efficient energy storage technology, lithium-ion batteries play a key role in the ongoing electrification of the mobility sector. However, the required modelbased design process, including hardware in the loop solutions, demands precise battery models. In this work, an encoder-decoder model framework based on recurrent neural networks is developed and trained directly on unstructured battery data to replace time consuming characterisation tests and thus simplify the modelling process. A manifold pseudo-random bit stream dataset is used for model training and validation. A mean percentage error (MAPE) of 0.30% for the test dataset attests the proposed encoder-decoder model excellent generalisation capabilities. Instead of the recursive one-step prediction prevalent in the literature, the stage-wise trained encoder-decoder framework can instantaneously predict the battery voltage response for 2000 time steps and proves to be 120 times more time-efficient on the test dataset. Accuracy, generalisation capability and time efficiency of the developed battery model enable a potential online anomaly detection, power or range prediction. The fact that, apart from the initial voltage level, the battery model only relies on the current load as input and thus requires no estimated variables such as the state-of-charge (SOC) to predict the voltage response holds the potential of a battery ageing independent LIB modelling based on raw BMS signals. The intrinsically ageingindependent battery model is thus suitable to be used as a digital battery twin in virtual experiments to estimate the unknown battery SOH on purely BMS data basis.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:90516
Date15 March 2024
CreatorsSchmitt, Jakob, Horstkötter, Ivo, Bäker, Bernard
PublisherElsevier
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation2352-152X, 106461, 10.1016/j.est.2022.106461

Page generated in 0.0053 seconds