Heavy-tailed workload distributions are commonly experienced in many areas of distributed computing. Such workloads are highly variable, where a small number of very large tasks make up a large proportion of the workload, making the load very hard to distribute effectively. Traditional task assignment policies are ineffective under these conditions as they were formulated based on the assumption of an exponentially distributed workload. Size-based task assignment policies have been proposed to handle heavy-tailed workloads, but their applications are limited by their static nature and assumption of prior knowledge of a task's service requirement. This thesis analyses existing approaches to load distribution under heavy-tailed workloads, and presents a new generalised task assignment policy that significantly improves performance for many distributed applications, by intelligently addressing the negative effects on performance that highly variable workloads cause. Many problems associated with the modelling and optimisations of systems under highly variable workloads were then addressed by a novel technique that approximated these workloads with simpler mathematical representations, without losing any of their pertinent original properties. Finally, we obtain advance queuing metrics (such as the variance of key measurements like waiting time and slowdown that are difficult to obtain analytically) through rigorous simulation.
Identifer | oai:union.ndltd.org:ADTP/210204 |
Date | January 2007 |
Creators | Broberg, James Andrew, james@broberg.com.au |
Publisher | RMIT University. Computer Science and Information Technology |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://www.rmit.edu.au/help/disclaimer, Copyright James Andrew Broberg |
Page generated in 0.0014 seconds