Reinforced Concrete (RC) bridge piers, RC columns along exterior of buildings or those located in parking garages are designed to support large compressive axial loads but are vulnerable to transverse out-of-plane loadings, such as those arising from impacts or explosions. To address a lack of understanding regarding blast and impact response of RC members and the need for retrofit techniques to address deficiencies in existing structures, a multi-disciplinary team including various institutes of the National Research Council and the University of Ottawa has initiated work towards developing a fibre reinforced polymer composite protection system for RC columns subjected to extreme shocks. This thesis will focus on the impact program of the aforementioned project. An extensive literature review was conducted to gain a better understanding of: impact loading and associated dynamic effects; experimental testing of RC members subjected to impact; experimental testing of axially loaded members; and retrofit methods for the protection of RC under impact loading. Five half-scale RC columns were constructed and tested using a drop-weight impact machine and two additional specimens were tested under static loading. Deflections, strain distributions within the columns, impact loads and reaction loads were measured during the testing of the built RC members. Comparisons of experimental datum were established between members with differing levels of axial load and between a retrofitted and a non-retrofitted member. Single-degree-of-freedom analysis was used to obtain the predicted response of certain columns under impact loading allowing for comparisons with experimental data.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU-OLD./23067 |
Date | 16 July 2012 |
Creators | Imbeau, Paul |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thèse / Thesis |
Page generated in 0.0018 seconds