Return to search

Identification d’appareils électriques par analyse des courants de mise en marche / Analysis of turn-on transient currents for electrical appliances identification

Le domaine lié à ce travail est appelé « désagrégation d’énergie », où la principale préoccupation est de décomposer, ou désagréger, la consommation globale d’énergie électrique (par exemple, la consommation de tout un ménage) en une consommation détaillée donnée comme information de consommation par usage (par exemple, par appareil). Cette dernière permet d’avoir un retour sur la consommation pour les consommateurs ainsi que pour les fournisseurs et est utile pour permettre des économies d’énergie. Dans ce domaine de désagrégation d’énergie, il existe trois grandes questions auxquelles il faut répondre : qui consomme ? quand ? et combien ? Les recherches menées dans cette thèse se concentrent sur l’identification des appareils électriques, c’est-à-dire la réponse à la première question, en considérant particulièrement des appareils ménagers. À cet effet, nous utilisons le courant transitoire de mise en marche que nous modélisons en utilisant un nouveau modèle que nous avons proposé. De plus, nous utilisons les paramètres estimés de ce dernier pour la tâche d’identification. / The related field to this work is called “energy disaggregation" where the main concern is to break down, or disaggregate, the global electrical energy consumption (e.g. wholehouse consumption) into a detailed consumption given as end-use (e.g. appliance-level) consumption information. This latter gives consumption feedback to consumers and electricity providers and is helpful for energy savings. Three main questions have to be answered in the energy disaggregation field : who is consuming ? when ? and how much ? The research conducted in this thesis focuses on electrical appliances identification, i.e. the who question, considering particularly home appliances. For this purpose, we use the turn-on transient current signal which we model using a new model we proposed and use its estimated model parameters for the identification task.

Identiferoai:union.ndltd.org:theses.fr/2016ORLE2063
Date09 December 2016
CreatorsNait Meziane, Mohamed
ContributorsOrléans, Ravier, Philippe, Le Bunetel, Jean-Charles
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds