The laterally-loaded pile has long been a topic of research interest. Several models of the soil surrounding a pile have been developed for simulation
of lateral pile behavior, ranging from simple spring and dashpot models to sophisticated three-dimensional finite-element models. However, results from
the available pile-soil models are not accurate due to inherent approximations
or constraints. For the springs and dashpots representation, the real and
imaginary stiffness are calculated by idealizing the soil domain as a series of plane-strain slices leading to unrealistic pile behavior at low frequencies while
the three-dimensional finite-element analysis is very computationally demanding. Therefore, this dissertation research seeks to contribute toward procedures that are computationally cost-effective while accuracy of the computed
response is maintained identical or close to that of the three-dimensional finite-element solution. Based on the fact that purely-elastic soil displacement variations in azimuthal direction are known, the surrounding soil can be formulated in terms of an equivalent one-dimensional model leading to a significant reduction of computational cost. The pile with conventional soil-slice model will
be explored first. Next, models with shear stresses between soil slices, including and neglecting the soil vertical displacement, are investigated. Excellent agreement of results from the proposed models with three-dimensional finite-element solutions can be achieved with only small additional computational cost. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/6578 |
Date | 20 October 2009 |
Creators | Thammarak, Punchet |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Format | electronic |
Rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.0016 seconds