A set S of vertices in a graph G = (V, E) is a locating-dominating set if S is a dominating set of G, and every pair of distinct vertices {u, v} in V - S is located with respect to S, that is, if the set of neighbors of u that are in S is not equal to the set of neighbors of v that are in S. We give a construction of trees that have unique minimum locating-dominating sets.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-3560 |
Date | 06 May 2006 |
Creators | Lane, Stephen M |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.0022 seconds