Return to search

Lois limites uniformes et estimation non-paramétrique de la régression

Nous utilisons la théorie moderne des processus empiriques indicés par des classes de fonctions afin d'établir la vitesse exacte de convergence presque sûre d'une large classe d'estimateurs par la méthode du noyau de la fonction de régression dont les estimateurs par lissage polynomial local. Ces résultats prennent la forme de lois limites uniformes du logarithme dans le prolongement des travaux de Deheuvels et Mason (2004) et permettent la construction de bornes de confiance asymptotiquement optimales. La démonstration s'appuie principalement sur une inégalité exponentielle pour la déviation par rapport à l'espérance de la norme du supremum du processus empirique indexé par des classes de fonctions à nombre de recouvrement uniformément polynomial. Nous présentons également une loi limite uniforme du logarithme dans un cadre semi-paramétrique concernant l'estimateur du maximum de vraisemblance local lorsque la loi conditionnelle est paramétrée par une fonction.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00011943
Date10 December 2004
CreatorsBlondin, David
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds