In this dissertation we study the dynamics of loop quantum gravity and its applications. We propose a tunneling phenomenon of a black hole-white hole transition and derive an amplitude for such transition using the spinfoam framework. We investigate a special class of kinematical states for loop quantum gravity - Bell spin networks - and show that their entanglement entropy obeys the area law. We develop a new spinfoam vertex amplitude that has the correct semi-classical limit. We then apply this new amplitude to calculate the graviton propagator and a cosmological transition amplitude. The results of these calculations show feasibility of computations with the new amplitude and its viability as a spinfoam model. Finally, we use physical principles to radically constrain ambiguities in the cosmological dynamics and derive unique Hamiltonian dynamics for Friedmann-Robertson-Walker and Bianchi I cosmologies. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_41969 |
Contributors | Vilensky, Ilya (author), Engle, Jonathan (Thesis advisor), Florida Atlantic University (Degree grantor), Charles E. Schmidt College of Science, Department of Physics |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Format | 235 p., application/pdf |
Rights | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0021 seconds