Spelling suggestions: "subject:"spinfoam"" "subject:"spinfoams""
1 |
LOOP QUANTUM GRAVITY DYNAMICS: MODELS AND APPLICATIONSUnknown Date (has links)
In this dissertation we study the dynamics of loop quantum gravity and its applications. We propose a tunneling phenomenon of a black hole-white hole transition and derive an amplitude for such transition using the spinfoam framework. We investigate a special class of kinematical states for loop quantum gravity - Bell spin networks - and show that their entanglement entropy obeys the area law. We develop a new spinfoam vertex amplitude that has the correct semi-classical limit. We then apply this new amplitude to calculate the graviton propagator and a cosmological transition amplitude. The results of these calculations show feasibility of computations with the new amplitude and its viability as a spinfoam model. Finally, we use physical principles to radically constrain ambiguities in the cosmological dynamics and derive unique Hamiltonian dynamics for Friedmann-Robertson-Walker and Bianchi I cosmologies. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
|
2 |
Corrections radiatives en gravité quantique à mousse de spins : Une étude du graphe de Self énergie dans le modèle EPRL Lorentzien / Radiative Corrections in Spinfoam Quantum GravityRiello, Aldo 22 July 2014 (has links)
Je propose la première étude quantitative des corrections radiatives du modèle EPRL en gravité quantique à mousse de spins. Ce modèle est la proposition la plus élaborée de gravité quantique Lorentzienne 4D dite 'indépendante du fond' ('background independent'). C'est une réalisation, par intégrale de chemin, de la quantification de la Relativité Générale comme somme sur les géométries. L'étude se focalise sur les propriétés et les aspects géométriques de l'analogue du graphe de self-énergie du modèle, connu comme le graphe 'melonique'. Je montre que les contributions dominantes à un tel graphe divergent beaucoup moins que celles de modèles similaires en théorie topologique des champs. De plus, je dérive en détails la dépendance des amplitudes aux données de bords, et montre que ce graphe n'induit pas une renormalisation de la fonction d'onde. Ceci est dû à des raisons reliées aux fondements du modèle. Cependant, il se trouve que l'amplitude se réduit à une telle renormalisation dans la limite de nombres quantiques élevés. Ensuite, je montre les conséquences de ces calculs sur une observable physique : la fonction à deux points de la métrique quantique. Ainsi, je montre comment l'insertion du graphe de self-énergie dans l'intérieur de la mousse de spins utilisée a des effets non-triviaux sur la fonction à deux points, modifiant ses contributions à l'ordre dominant. De façon intéressante, ces effets ne disparaissent pas dans la limite des nombres quantiques élevés. Enfin, je discute les conséquences de ces calculs pour le modèle lui-même, et je souligne et commente les traits généraux qui semblent commun à tout modèle de mousse de spins basé sur le schéma présenté ici. / I present the first quantitative study of radiative corrections within the EPRL model of quantum gravity. This model is the most advanced proposal of Lorentzian 4-dimensional background-independent quantum gravity. It is a realization of the path-integral quantization of general relativity as a sum over geometries. The present study focuses on the properties and geometrical features of the analogue of the self-energy graph within the model, often referred to as the "melon"-graph. Here, I show that the dominating contribution to such a graph is characterized by a degree of divergence much smaller than that of closely related topological quantum field theories. Moreover, I work out in detail the dependence of the amplitude from the boundary data, and find that the self-energy graph does not simply induce a wave function renormaliziation. This happens for reasons deeply related to the model foundations. However, it turns out that the amplitude reduces to a wave function renormalzation in the limit of large quantum numbers. Then, I show the consequences of this calculations on a concrete spinfoam observable: the quantum-metric two-point function. In doing this, I show how the insertion of the self-energy graph in the bulk of the (first-order) spinfoam used in the calculation, has non-trivial effects on the correlation function, modifying its leading order contributions. Most interestingly, this effects do not disappear in the limit of large quantum number. Finally, I discuss the consequences of these calculations for the model itself, and I point out and comment those general features which seem to be common to any spinfoam model based on the present model-building schemes.
|
3 |
Gravité quantique à boucles et géométrie discrète / Loop Quantum Gravity and Discrete GeometryZhang, Mingyi 21 July 2014 (has links)
Dans ce travail de thèse , je présente comment extraire les géométries discrètes de l'espace-temps de la formulation covariante de la gravitaté quantique à boucles, qui est appelé le formalisme de la mousse de spin. LQG est une théorie quantique de la gravité qui non-perturbativement quantifie la relativité générale indépendante d'un fond fixe. Il prédit que la géométrie de l'espace est quantifiée, dans lequel l'aire et le volume ne peuvent prendre que la valeur discrète. L'espace de Hilbert cinématique est engendré par les fonctions du réseau de spin. L'excitation de la géométrie peut être parfaitement visualisée comme des polyèdres floue qui collées à travers leurs facettes. La mousse de spin définit la dynamique de la LQG par une amplitude de la mousse de spin sur un complexe cellulaire avec un état du réseau de spin comme la frontiére. Cette thèse présente deux résultats principaux. Premièrement, la limite semi-classique de l'amplitude de la mousse de spin sur un complexe simplicial arbitraire avec une frontière est complètement étudiée. La géométrie discrète classique de l'espace-temps est reconstruite et classée par les configurations critiques de l'amplitude de la mousse de spin. Deuxièmement, la fonction de trois-point de LQG est calculé. Il coïncide avec le résultat de la gravité discrète. Troisièmement, la description des géométries discrètes de hypersurfaces nulles est explorée dans le cadre de la LQG. En particulier, la géométrie nulle est décrit par une structure singulière euclidienne sur la surface de type espace à deux dimensions définie par un feuilletage de l'espace-temps par hypersurfaces nulles. / In this thesis, I will present how to extract discrete geometries of space-time fromthe covariant formulation of loop quantum gravity (LQG), which is called the spinfoam formalism. LQG is a quantum theory of gravity that non-perturbative quantizesgeneral relativity independent from a fix background. It predicts that the geometryof space is quantized, in which area and volume can only take discrete value. Thekinematical Hilbert space is spanned by Penrose's spin network functions. The excita-tion of geometry can be neatly visualized as fuzzy polyhedra that glued through theirfacets. The spin foam defines the dynamics of LQG by a spin foam amplitude on acellular complex, bounded by the spin network states. There are three main results inthis thesis. First, the semiclassical limit of the spin foam amplitude on an arbitrarysimplicial cellular complex with boundary is studied completely. The classical discretegeometry of space-time is reconstructed and classified by the critical configurations ofthe spin foam amplitude. Second, the three-point function from LQG is calculated.It coincides with the results from discrete gravity. Third, the description of discretegeometries of null hypersurfaces is explored in the context of LQG. In particular, thenull geometry is described by a Euclidean singular structure on the two-dimensionalspacelike surface defined by a foliation of space-time by null hypersurfaces. Its quan-tization is U(1) spin network states which are embedded nontrivially in the unitaryirreducible representations of the Lorentz group.
|
4 |
Transition de géométrie en gravité quantique à boucles covariante / Geometry transition in covariant loop quantum gravityChristodoulou, Marios 23 October 2017 (has links)
Dans ce manuscrit, nous présentons un mise en place et calcul d'un observable physique dans le cadre de la Gravité Quantique à Boucles covariante, pour un processus physique mettant en jeu la gravité quantique de façon non-perturbatif. Nous considerons la transition d'une région de trou noir à une région de trou blanc, traitée comme une transition de géométrie assimilable à un effet de tunnel gravitationnel. L'observable physique est le temps caractéristique dans lequel ce processus se déroule.Nous commençons par une dérivation formelle de haut--en--bas, allant de l'action de Hilbert-Einstein au ansatz qui définit les amplitudes de l'approche covariante de la GQB. Nous prenons ensuite le chemin de bas--en--haut, aboutissant à l'image d'une intégrale de chemin du type somme-de-géométries qui émerge à la limite semi-classique, et discutons son lien étroite avec une intégrale de chemin basé sur l'action de Regge. En suite, nous expliquons comment construire des paquets d'ondes décrivant des géométries spatiales quantiques, plongées dans un espace-temps quantique de signature Lorentzienne.Nous montrons que lors de la mise en œuvre de ces outils, nous avons une estimation simple des amplitudes décrivant des transitions de géométrie de façon probabiliste. Nous construisons un mise en place basée sur l'espace-temps Haggard-Rovelli, où une approche d'intégrale de chemin peut être appliquée naturellement. Nous procédons à une dérivation d'une expression explicite, analytiquement bien--définie et finie, pour une amplitude de transition décrivant ce processus. Nous utilisons ensuite l'approximation semi-classique pour estimer le temps caractéristique du phénomène. / In this manuscript we present a calculation from covariant Loop Quantum Gravity, of a physical observable in a non-perturbative quantum gravitational physical process. The process regards the transition of a trapped region to an anti--trapped region and is treated as a quantum geometry transition akin to gravitational tunneling. The physical observable is the characteristic timescale in which the process takes place. We start with a top--to--bottom formal derivation of the ansatz defining the amplitudes for covariant LQG, starting from the Hilbert-Einstein action. We then take the bottom--to--top path, starting from the EPRL ansatz, to the sum--over--geometries path integral emerging in the semi-classical limit, and discuss its close relation to the naive path integral over the Regge action. We proceed to the construction of wave--packets describing quantum spacelike three-geometries that include a notion of embedding in a Lorentzian spacetime. We derive a simple estimation for the amplitudes describing geometry transition and show that a probabilistic description for such phenomena emerges, with the probability of the phenomena to take place being in general non-vanishing.The Haggard-Rovelli spacetime, modelling the spacetime surrounding the geometry transition region for a black to white hole process, is formulated. We then use the semi--classical approximation to give a general estimation of amplitudes describing the process. We conclude that the transition is predicted to be allowed by LQG, with a crossing time that is linear in the mass. The probability for the process to take place is suppressed but non-zero.
|
5 |
Structure chirale de la gravité quantique à boucles / The Chiral Structure of Loop Quantum GravityWieland, Wolfgang 12 December 2013 (has links)
La relativité générale représente la description la plus précise de l'interaction gravitationnelle. Cependant, alors que la matière est régie par les lois de la mécanique quantique, la gravitation, elle, est une théorie fondamentalement classique. A l'échelle de Planck, c'est-à-dire à des distances d'environ 10E-35 mètres, les effets quantiques et ceux de la gravitation deviennent tous deux importants. A l'heure actuelle, un langage mathématique unifié et décrivant les effets physiques à cette échelle est toujours manquant. Il existe néanmoins plusieurs théories candidates à cette description, et l'une d'entre elles, la gravité quantique à boucles, est l'objet d'étude de cette thèse.Afin de tester si une théorie candidate peur fournir une description appropriée des propriétés quantiques du champ de gravitation, elle doit présenter une certaine cohérence interne du point de vue mathématique, et aussi être en accord avec les tests expérimentaux de la relativité générale. Le but de cette thèse est de développer certains outils mathématiques qui éclairent ces conditions de consistance interne, et qui permettent d'établir un lien entre différentes formulations de la théorie. / General relativity is the most precise theory of the gravitational interaction. It is a classical field theory. All matter, on the other hand, follows the rules of quantum theory. At the Planck scale, at about distances of the order of 10E-35 meters, both theories become equally important. Today, theoretical physics lacks a unifying language to explore what happens at this scale, but there are several candidate theories available. Loop quantum gravity is one them, and it is the main topic of this thesis. To see whether a particular proposal is a viable candidate for a quantum theory of the gravitational field it must be free of internal inconsistencies, and agree with all experimental tests of general relativity. This thesis develops mathematical tools to check these.
|
Page generated in 0.0251 seconds