• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Géométrie quantique dans les mousses de Spins : de la théorie topologique BF vers la relativité générale / Quantum geometry in Spin foams : from the topological BF theory towards general relativity

Bonzom, Valentin 23 September 2010 (has links)
La gravité quantique à boucles a fourni un cadre d’étude particulièrement bien adapté aux théories de jauge définies sans métrique fixe et invariante sous difféomorphismes. Les excitations fondamentales de cette quantification sont appelées réseaux de spins, et dans le contexte de la relativité générale donnent un sens à la géométrie quantique au niveau canonique. Les mousses de spins constituent une sorte d’intégrale de chemins adaptée aux réseaux de spins, et donc destinée à permettre le calcul des amplitudes de transition entre ces états. Cette quantification est particulièrement efficace pour les théories des champs topologiques, comme Yang-Mills 2d, la gravité 3d ou les théories BF, et des modèles ont aussi été proposés pour la gravité quantique en dimension 4.Nous discutons dans cette thèse différentes méthodes pour l’étude des modèles de mousses de spins.Nous présentons en particulier des relations de récurrence sur les amplitudes de mousses de spins. De manière générique, elles codent des symétries classiques au niveau quantique, et sont susceptible de permettre de faire le lien avec les contraintes hamiltoniennes. De telles relations s’interprètent naturellement en termes de déformations élémentaires sur des structures géométriques discrètes, telles que simplicielles. Une autre méthode intéressante consiste à explorer la façon dont on peut réécrire les modèles de mousses de spins comme des intégrales de chemins pour des systèmes de géométries sur réseau, en s’inspirant à la fois des modèles topologiques et du calcul de Regge. Cela aboutit à une vision très géométrique des modèles, et fournit des actions classiques sur réseau dont on étudie les points stationnaires. / Loop quantum gravity has provided us with a canonical framework especially devised for back-ground independent and diffeomorphism invariant gauge field theories. In this quantization the funda-mental excitations are called spin network states, and in the context of general relativity, they give ameaning to quantum geometry. Spin foams are a sort of path integral for spin network states, supposed to enable the computations of transition amplitudes between these states. The spin foam quantization has proved very efficient for topological field theories, like 2d Yang-Mills, 3d gravity or BF theories. Different models have also been proposed for 4-dimensional quantum gravity.In this PhD manuscript, I discuss several methods to study spin foam models. In particular, I present some recurrence relations on spin foam amplitudes, which generically encode classical symme-tries at the quantum level, and are likely to help fill the gap with the Hamiltonian constraints. These relations can be naturally interpreted in terms of elementary deformations of discrete geometric struc-tures, like simplicial geometries. Another interesting method consists in exploring the way spin foam models can be written as path integrals for systems of geometries on a lattice, taking inspiration from topological models and Regge calculus. This leads to a very geometric view on spin foams, and gives classical action principles which are studied in details.
2

Structure chirale de la gravité quantique à boucles / The Chiral Structure of Loop Quantum Gravity

Wieland, Wolfgang 12 December 2013 (has links)
La relativité générale représente la description la plus précise de l'interaction gravitationnelle. Cependant, alors que la matière est régie par les lois de la mécanique quantique, la gravitation, elle, est une théorie fondamentalement classique. A l'échelle de Planck, c'est-à-dire à des distances d'environ 10E-35 mètres, les effets quantiques et ceux de la gravitation deviennent tous deux importants. A l'heure actuelle, un langage mathématique unifié et décrivant les effets physiques à cette échelle est toujours manquant. Il existe néanmoins plusieurs théories candidates à cette description, et l'une d'entre elles, la gravité quantique à boucles, est l'objet d'étude de cette thèse.Afin de tester si une théorie candidate peur fournir une description appropriée des propriétés quantiques du champ de gravitation, elle doit présenter une certaine cohérence interne du point de vue mathématique, et aussi être en accord avec les tests expérimentaux de la relativité générale. Le but de cette thèse est de développer certains outils mathématiques qui éclairent ces conditions de consistance interne, et qui permettent d'établir un lien entre différentes formulations de la théorie. / General relativity is the most precise theory of the gravitational interaction. It is a classical field theory. All matter, on the other hand, follows the rules of quantum theory. At the Planck scale, at about distances of the order of 10E-35 meters, both theories become equally important. Today, theoretical physics lacks a unifying language to explore what happens at this scale, but there are several candidate theories available. Loop quantum gravity is one them, and it is the main topic of this thesis. To see whether a particular proposal is a viable candidate for a quantum theory of the gravitational field it must be free of internal inconsistencies, and agree with all experimental tests of general relativity. This thesis develops mathematical tools to check these.

Page generated in 0.076 seconds