Spelling suggestions: "subject:"spin foams"" "subject:"pin foams""
1 |
Constructing quantum spacetime : relation to classical gravitySteinhaus, Sebastian January 2014 (has links)
Despite remarkable progress made in the past century, which has revolutionized our understanding of the universe, there are numerous open questions left in theoretical physics. Particularly important is the fact that the theories describing the fundamental interactions of nature are incompatible. Einstein's theory of general relative describes gravity as a dynamical spacetime, which is curved by matter and whose curvature determines the motion of matter. On the other hand we have quantum field theory, in form of the standard model of particle physics, where particles interact via the remaining interactions - electromagnetic, weak and strong interaction - on a flat, static spacetime without gravity.
A theory of quantum gravity is hoped to cure this incompatibility by heuristically replacing classical spacetime by quantum spacetime'. Several approaches exist attempting to define such a theory with differing underlying premises and ideas, where it is not clear which is to be preferred. Yet a minimal requirement is the compatibility with the classical theory, they attempt to generalize.
Interestingly many of these models rely on discrete structures in their definition or postulate discreteness of spacetime to be fundamental. Besides the direct advantages discretisations provide, e.g. permitting numerical simulations, they come with serious caveats requiring thorough investigation: In general discretisations break fundamental diffeomorphism symmetry of gravity and are generically not unique. Both complicates establishing the connection to the classical continuum theory.
The main focus of this thesis lies in the investigation of this relation for spin foam models. This is done on different levels of the discretisation / triangulation, ranging from few simplices up to the continuum limit. In the regime of very few simplices we confirm and deepen the connection of spin foam models to discrete gravity. Moreover, we discuss dynamical, e.g. diffeomorphism invariance in the discrete, to fix the ambiguities of the models. In order to satisfy these conditions, the discrete models have to be improved in a renormalisation procedure, which also allows us to study their continuum dynamics. Applied to simplified spin foam models, we uncover a rich, non--trivial fixed point structure, which we summarize in a phase diagram. Inspired by these methods, we propose a method to consistently construct the continuum theory, which comes with a unique vacuum state. / Trotz bemerkenswerter Fortschritte im vergangenen Jahrhundert, die unser Verständnis des Universums revolutioniert haben, gibt es noch zahlreiche ungeklärte Fragen in der theoretischen Physik. Besondere Bedeutung kommt der Tatsache zu, dass die Theorien, welche die fundamentalen Wechselwirkungen der Natur beschreiben, inkompatibel sind. Nach Einsteins allgemeiner Relativitätstheorie wird die Gravitation durch eine dynamische Raumzeit dargestellt, die von Materie gekrümmt wird und ihrerseits durch die Krümmung die Bewegung der Materie bestimmt. Dem gegenüber steht die Quantenfeldtheorie, die die verbliebenen Wechselwirkungen - elektromagnetische, schwache und starke Wechselwirkung - im Standardmodell der Teilchenphysik beschreibt, in dem Teilchen auf einer statischen Raumzeit -- ohne Gravitation -- miteinander interagieren.
Die Hoffnung ist, dass eine Theorie der Quantengravitation diese Inkompatibilität beheben kann, indem, heuristisch, die klassische Raumzeit durch eine 'Quantenraumzeit' ersetzt wird. Es gibt zahlreiche Ansätze eine solche Theorie zu definieren, die auf unterschiedlichen Prämissen und Ideen beruhen, wobei a priori nicht klar ist, welche zu bevorzugen sind. Eine Minimalanforderung an diese Theorien ist Kompatibilität mit der klassischen Theorie, die sie verallgemeinern sollen.
Interessanterweise basieren zahlreiche Modelle in ihrer Definition auf Diskretisierungen oder postulieren eine fundamentale Diskretheit der Raumzeit. Neben den unmittelbaren Vorteilen, die Diskretisierungen bieten, z.B. das Ermöglichen numerischer Simulationen, gibt es auch gravierende Nachteile, die einer ausführlichen Untersuchung bedürfen: Im Allgemeinen brechen Diskretisierungen die fundamentale Diffeomorphismensymmetrie der Gravitation und sind in der Regel nicht eindeutig definiert. Beides erschwert die Wiederherstellung der Verbindung zur klassischen, kontinuierlichen Theorie.
Das Hauptaugenmerk dieser Doktorarbeit liegt darin diese Verbindung insbesondere für Spin-Schaum-Modelle (spin foam models) zu untersuchen. Dies geschieht auf sehr verschiedenen Ebenen der Diskretisierung / Triangulierung, angefangen bei wenigen Simplizes bis hin zum Kontinuumslimes. Im Regime weniger Simplizes wird die bekannte Verbindung von Spin--Schaum--Modellen zu diskreter Gravitation bestätigt und vertieft. Außerdem diskutieren wir dynamische Prinzipien, z.B. Diffeomorphismeninvarianz im Diskreten, um die Ambiguitäten der Modelle zu fixieren. Um diese Bedingungen zu erfüllen, müssen die diskreten Modelle durch Renormierungsverfahren verbessert werden, wodurch wir auch ihre Kontinuumsdynamik untersuchen können. Angewandt auf vereinfachte Spin-Schaum-Modelle finden wir eine reichhaltige, nicht-triviale Fixpunkt-Struktur, die wir in einem Phasendiagramm zusammenfassen. Inspiriert von diesen Methoden schlagen wir zu guter Letzt eine konsistente Konstruktionsmethode für die Kontinuumstheorie vor, die einen eindeutigen Vakuumszustand definiert.
|
2 |
Géométrie quantique dans les mousses de Spins : de la théorie topologique BF vers la relativité générale / Quantum geometry in Spin foams : from the topological BF theory towards general relativityBonzom, Valentin 23 September 2010 (has links)
La gravité quantique à boucles a fourni un cadre d’étude particulièrement bien adapté aux théories de jauge définies sans métrique fixe et invariante sous difféomorphismes. Les excitations fondamentales de cette quantification sont appelées réseaux de spins, et dans le contexte de la relativité générale donnent un sens à la géométrie quantique au niveau canonique. Les mousses de spins constituent une sorte d’intégrale de chemins adaptée aux réseaux de spins, et donc destinée à permettre le calcul des amplitudes de transition entre ces états. Cette quantification est particulièrement efficace pour les théories des champs topologiques, comme Yang-Mills 2d, la gravité 3d ou les théories BF, et des modèles ont aussi été proposés pour la gravité quantique en dimension 4.Nous discutons dans cette thèse différentes méthodes pour l’étude des modèles de mousses de spins.Nous présentons en particulier des relations de récurrence sur les amplitudes de mousses de spins. De manière générique, elles codent des symétries classiques au niveau quantique, et sont susceptible de permettre de faire le lien avec les contraintes hamiltoniennes. De telles relations s’interprètent naturellement en termes de déformations élémentaires sur des structures géométriques discrètes, telles que simplicielles. Une autre méthode intéressante consiste à explorer la façon dont on peut réécrire les modèles de mousses de spins comme des intégrales de chemins pour des systèmes de géométries sur réseau, en s’inspirant à la fois des modèles topologiques et du calcul de Regge. Cela aboutit à une vision très géométrique des modèles, et fournit des actions classiques sur réseau dont on étudie les points stationnaires. / Loop quantum gravity has provided us with a canonical framework especially devised for back-ground independent and diffeomorphism invariant gauge field theories. In this quantization the funda-mental excitations are called spin network states, and in the context of general relativity, they give ameaning to quantum geometry. Spin foams are a sort of path integral for spin network states, supposed to enable the computations of transition amplitudes between these states. The spin foam quantization has proved very efficient for topological field theories, like 2d Yang-Mills, 3d gravity or BF theories. Different models have also been proposed for 4-dimensional quantum gravity.In this PhD manuscript, I discuss several methods to study spin foam models. In particular, I present some recurrence relations on spin foam amplitudes, which generically encode classical symme-tries at the quantum level, and are likely to help fill the gap with the Hamiltonian constraints. These relations can be naturally interpreted in terms of elementary deformations of discrete geometric struc-tures, like simplicial geometries. Another interesting method consists in exploring the way spin foam models can be written as path integrals for systems of geometries on a lattice, taking inspiration from topological models and Regge calculus. This leads to a very geometric view on spin foams, and gives classical action principles which are studied in details.
|
3 |
Semiclassical analysis of loop quantum gravityConrady, Florian 12 September 2006 (has links)
In dieser Dissertation untersuchen und entwickeln wir neue Methoden, die dabei helfen sollen eine effektive semiklassische Beschreibung der kanonischen Loop-Quantengravitation und der Spinfoam-Gravitation zu bestimmen. Einer kurzen Einführung in die Loop-Quantengravitation folgen drei Forschungsartikel, die die Resultate der Doktorarbeit präsentieren. Im ersten Artikel behandeln wir das Problem der Zeit und einen neuen Vorschlag zur Implementierung von Eigenzeit durch Randbedingungen an Pfadintegrale: wir untersuchen eine konkrete Realisierung dieses Formalismus für die freie Skalarfeldtheorie. Im zweiten Artikel übersetzen wir semiklassische Zustände der linearisierten Gravitation in Zustände der Loop-Quantengravitation. Deren Eigenschaften deuten an, wie sich Semiklassizität im Loop-Formalismus manifestiert, and wie man dies benützen könnte, um semiklassische Entwicklungen herzuleiten. Im dritten Teil schlagen wir eine neue Formulierung von Spinfoam-Modellen vor, die vollständig Triangulierungs- und Hintergrund-unabhängig ist: mit Hilfe einer Symmetrie-Bedingung identifizieren wir Spinfoam-Modelle, deren Triangulierungs-Abhängigkeit auf natürliche Weise entfernt werden kann. / In this Ph.D. thesis, we explore and develop new methods that should help in determining an effective semiclassical description of canonical loop quantum gravity and spin foam gravity. A brief introduction to loop quantum gravity is followed by three research papers that present the results of the Ph.D. project. In the first article, we deal with the problem of time and a new proposal for implementing proper time as boundary conditions in a sum over histories: we investigate a concrete realization of this formalism for free scalar field theory. In the second article, we translate semiclassical states of linearized gravity into states of loop quantum gravity. The properties of the latter indicate how semiclassicality manifests itself in the loop framework, and how this may be exploited for doing semiclassical expansions. In the third part, we propose a new formulation of spin foam models that is fully triangulation- and background-independent: by means of a symmetry condition, we identify spin foam models whose triangulation-dependence can be naturally removed.
|
Page generated in 0.0498 seconds