• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approaches to quantum gravity

Flori, Cecilia 16 June 2011 (has links)
In dieser Arbeit beschäftigen wir uns mit zwei Ansätzen zur Quantengravitation (QG), die einander konträr gegenüberstehen: - Erstens mit der Loop Quantum Gravity (LQG), einem eher konservativen Ansatz zur QG, dessen Startpunkt eine Hamiltonsche Formulierung der klassischen Allgemeinen Relativitätstheorie (ART) ist, - zweitens mit der sogenannten Topos-Theorie, angewandt auf die Allgemeine Relativitätstheorie, die die mathematischen Konzepte der Quantentheorie (und möglicherweise auch der ART) radikal umformuliert, was eine immense Redefinition von Konzepten wie Raum, Zeit und Raumzeit zur Folge hätte. Der Grund für die Wahl zweier so verschiedener Ansätzen als Gegenstand dieser Arbeit liegt in der Hoffnung begründet, dass sich diese beiden Ansätze auf einen gemeinsamen Ursprung zurückführen lassen können und somit gegenseitig ergänzen können. Im ersten Teil dieser Arbeit führen wir den allgemeinen Formalismus der LQG ein und gehen dabei insbesondere auf den semiklassischen Sektor der Theorie ein; insbesondere untersuchen wir die semiklassischen Eigenschaften des Volumenoperators. Dieser Operator spielt in der Quantendynamik der LQG eine tragende Rolle, da alle bekannten dynamischen Operatoren auf den Volumenoperator zurückgeführt werden können. Aus diesem Grund ist es auerordentlich wichtig zu überprüfen, dass der klassische Limes des Volumenoperators wirklich mit dem klassischen Volumen übereinstimmt. Anschließend beschäftigen wir uns mit sogenannten Spin Foam Modellen (SFM), welche als ein kovarianter oder Pfadintegralzugang zur kanonischen LQG angesehen werden können. Diese Spin Foam Modelle beruhen auf einer Langrange-Formulierung der LQG mittels einer kovarianten sum-over-histories Beschreibung. Die Entwicklung eines Lagrange-Zuganges zur LQG wurde motiviert durch die Tatsache, dass es in der kanonischen Formulierung der LQG überaus schwierig ist, Übergangsamplituden auszurechnen. Allerdings weichen die Spin Foam Modelle, die wir in dieser Arbeit behandeln in einem entscheidenden Punkt von den bisher in der Literatur diskutierten ab, da wir die Holst-Wirkung Holst [1996] und nicht die Palatini-Wirkung als Ausgangspunkt nehmen. Dies ermöglicht es uns, explizit gewisse Zwangsbedingungen zu lösen, was in den gegenwärtig diskutierten SFM problematisch scheint. Im zweiten Teil dieser Arbeit führen wir in die Topos-Theorie ein und rekapitulieren, wie diese Theorie benutzt werden kann, um die Quantentheorie derart umzuformulieren, dass eine konsistente Quanten-Logik definiert werden kann. Darüber hinaus definieren wir auch eine Topos-Beschreibung der Quantentheorie in der sum-over-histories Formulierung. Unser Ansatz entscheidet sich vom gegenwärtigen consistent-histories Ansatz vor allem dadurch, dass das Konzept der konsistenten Menge (eine Menge von Historien, die nicht mit sich selbst interferieren) keine zentrale Rolle spielt, während es in letzterem grundlegend ist. Diese Tatsache bietet einen interessanten Ausgangspunkt, da eine der Hauptschwierigkeiten im consistent-histories Ansatz darin besteht, die richtige konsistente Menge der Propositionen von Historien zu finden: Im allgemeinen gibt es viele solcher Mengen, und die meisten davon sind nicht miteinander kompatibel. Wir zeigen, dass in unserer Topos-Beschreibung der sum-over-histories Quantentheorie jeder Proposition von Historien Wahrheitswerte zugeteilt werden können; daher ist das Konzept einer konsistenten Menge von Propositionen redundant. Dies bedeutet, dass es im Rahmen einer Quantengravitationstheorie möglich sein könnte, jeder Proposition von vierdimensionalen Metriken (welche als allgemein relativistisches Analogon einer Historie angesehen werden können) einen Wahrheitswert zuzuweisen. / One of the main challenges in theoretical physics over the last five decades has been to reconcile quantum mechanics with general relativity into a theory of quantum gravity. However, such a theory has been proved to be hard to attain due to i) conceptual difficulties present in both the component theories (General Relativity (GR) and Quantum Theory); ii) lack of experimental evidence, since the regimes at which quantum gravity is expected to be applicable are far beyond the range of conceivable experiments. Despite these difficulties, various approaches for a theory of Quantum Gravity have been developed. In this thesis we focus on two such approaches: Loop Quantum Gravity and the Topos theoretic approach. The choice fell on these approaches because, although they both reject the Copenhagen interpretation of quantum theory, their underpinning philosophical approach to formulating a quantum theory of gravity are radically different. In particular LQG is a rather conservative scheme, inheriting all the formalism of both GR and Quantum Theory, as it tries to bring to its logical extreme consequences the possibility of combining the two. On the other hand, the Topos approach involves the idea that a radical change of perspective is needed in order to solve the problem of quantum gravity, especially in regard to the fundamental concepts of `space'' and `time''. Given the partial successes of both approaches, the hope is that it might be possible to find a common ground in which each approach can enrich the other.
2

Divergence des mousses de spins : Comptage de puissances et resommation dans le modèle plat

Smerlak, Matteo 07 December 2011 (has links)
L’objet de cette thèse est l’étude du modèle plat, l’ingrédient principal du programme de quantification de la gravité par les mousses de spins, avec un accent particulier sur ses divergences. Outre une introduction personnelle au problème de la gravité quantique, le manuscrit se compose de deux parties. Dans la première, nous obtenons une formule exacte pour le comptage de puissances des divergences de bulles dans le modèle plat, notamment grâce à des outils de théorie de jauge discrète et de cohomologie tordue. Dans la seconde partie, nous considérons le problème de la limite continue des mousses de spins, tant du point de vue des théories de jauge sur réseau que du point de vue de la group field theory. Nous avançons en particulier une nouvelle preuve de la sommabilité de Borel du modèle de Boulatov-Freidel-Louapre, permettant un contrôle accru du comportement d’échelle dans la limite de grands spins. Nous concluons par une discussion prospective du programme de renormalisation pour les mousses de spins. / In this thesis we study the flat model, the main buidling block for the spinfoam ap- proach to quantum gravity, with an emphasis on its divergences. Besides a personal introduction to the problem of quantum gravity, the manuscript consists in two part. In the first one, we establish an exact powercounting formula for the bubble divergences of the flat model, using tools from discrete gauge theory and twisted cohomology. In the second one, we address the issue of spinfoam continuum limit, both from the lattice field theory and the group field theory perspectives. In particular, we put forward a new proof of the Borel summability of the Boulatov-Freidel-Louapre model, with an improved control over the large-spin scaling behaviour. We conclude with an outlook of the renormalization program in spinfoam quantum gravity.
3

Transition de géométrie en gravité quantique à boucles covariante / Geometry transition in covariant loop quantum gravity

Christodoulou, Marios 23 October 2017 (has links)
Dans ce manuscrit, nous présentons un mise en place et calcul d'un observable physique dans le cadre de la Gravité Quantique à Boucles covariante, pour un processus physique mettant en jeu la gravité quantique de façon non-perturbatif. Nous considerons la transition d'une région de trou noir à une région de trou blanc, traitée comme une transition de géométrie assimilable à un effet de tunnel gravitationnel. L'observable physique est le temps caractéristique dans lequel ce processus se déroule.Nous commençons par une dérivation formelle de haut--en--bas, allant de l'action de Hilbert-Einstein au ansatz qui définit les amplitudes de l'approche covariante de la GQB. Nous prenons ensuite le chemin de bas--en--haut, aboutissant à l'image d'une intégrale de chemin du type somme-de-géométries qui émerge à la limite semi-classique, et discutons son lien étroite avec une intégrale de chemin basé sur l'action de Regge. En suite, nous expliquons comment construire des paquets d'ondes décrivant des géométries spatiales quantiques, plongées dans un espace-temps quantique de signature Lorentzienne.Nous montrons que lors de la mise en œuvre de ces outils, nous avons une estimation simple des amplitudes décrivant des transitions de géométrie de façon probabiliste. Nous construisons un mise en place basée sur l'espace-temps Haggard-Rovelli, où une approche d'intégrale de chemin peut être appliquée naturellement. Nous procédons à une dérivation d'une expression explicite, analytiquement bien--définie et finie, pour une amplitude de transition décrivant ce processus. Nous utilisons ensuite l'approximation semi-classique pour estimer le temps caractéristique du phénomène. / In this manuscript we present a calculation from covariant Loop Quantum Gravity, of a physical observable in a non-perturbative quantum gravitational physical process. The process regards the transition of a trapped region to an anti--trapped region and is treated as a quantum geometry transition akin to gravitational tunneling. The physical observable is the characteristic timescale in which the process takes place. We start with a top--to--bottom formal derivation of the ansatz defining the amplitudes for covariant LQG, starting from the Hilbert-Einstein action. We then take the bottom--to--top path, starting from the EPRL ansatz, to the sum--over--geometries path integral emerging in the semi-classical limit, and discuss its close relation to the naive path integral over the Regge action. We proceed to the construction of wave--packets describing quantum spacelike three-geometries that include a notion of embedding in a Lorentzian spacetime. We derive a simple estimation for the amplitudes describing geometry transition and show that a probabilistic description for such phenomena emerges, with the probability of the phenomena to take place being in general non-vanishing.The Haggard-Rovelli spacetime, modelling the spacetime surrounding the geometry transition region for a black to white hole process, is formulated. We then use the semi--classical approximation to give a general estimation of amplitudes describing the process. We conclude that the transition is predicted to be allowed by LQG, with a crossing time that is linear in the mass. The probability for the process to take place is suppressed but non-zero.

Page generated in 0.04 seconds