Spelling suggestions: "subject:"loop quantengravitation"" "subject:"loop kvantgravitation""
1 |
Coupling matter to loop quantum gravitySahlmann, Hanno January 2002 (has links)
Motiviert durch neuere Vorschläge zur experimentellen Untersuchung von Quantengravitationseffekten werden in der vorliegenden Arbeit Annahmen und Methoden untersucht, die für die Vorhersagen solcher Effekte im Rahmen der Loop-Quantengravitation verwendet werden können. Dazu wird als Modellsystem ein skalares Feld, gekoppelt an das Gravitationsfeld, betrachtet. <br />
Zunächst wird unter bestimmten Annahmen über die Dynamik des gekoppelten Systems eine Quantentheorie für das Skalarfeld vorgeschlagen. Unter der Annahme, dass sich das Gravitationsfeld in einem semiklassischen Zustand befindet, wird dann ein "QFT auf gekrümmter Raumzeit-Limes" dieser Theorie definiert. Im Gegensatz zur gewöhnlichen Quantenfeldtheorie auf gekrümmter Raumzeit beschreibt die Theorie in diesem Grenzfall jedoch ein quantisiertes Skalarfeld, das auf einem (klassisch beschriebenen) Zufallsgitter propagiert. <br />
Sodann werden Methoden vorgeschlagen, den Niederenergieliemes einer solchen Gittertheorie, vor allem hinsichtlich der resultierenden modifizierten Dispersonsrelation, zu berechnen. Diese Methoden werden anhand von einfachen Modellsystemen untersucht. <br />
Schließlich werden die entwickelten Methoden unter vereinfachenden Annahmen und der Benutzung einer speziellen Klasse von semiklassischen Zuständen angewandt, um Korrekturen zur Dispersionsrelation des skalaren und des elektromagnetischen Feldes im Rahmen der Loop-Quantengravitation zu berechnen. Diese Rechnungen haben vorläufigen Charakter, da viele Annahmen eingehen, deren Gültigkeit genauer untersucht werden muss. Zumindest zeigen sie aber Probleme und Möglichkeiten auf, im Rahmen der Loop-Quantengravitation Vorhersagen zu machen, die sich im Prinzip experimentell verifizieren lassen. / Motivated by recent proposals on the experimental detectability of quantum gravity effects, the present thesis investigates assumptions and methods which might be used for the prediction of such effects within the framework of loop quantum gravity. To this end, a scalar field coupled to gravity is considered as a model system. <br />
Starting from certain assumptions about the dynamics of the coupled gravity-matter system, a quantum theory for the scalar field is proposed. Then, assuming that the gravitational field is in a semiclassical state, a "QFT on curved space-time limit" of this theory is defined. In contrast to ordinary quantum field theory on curved space-time however, in this limit the theory describes a quantum scalar field propagating on a (classical) random lattice. <br />
Then, methods to obtain the low energy limit of such a lattice theory, especially regarding the resulting modified dispersion relations, are discussed and applied to simple model systems. <br />
Finally, under certain simplifying assumptions, using the methods developed before as well as a specific class of semiclassical states, corrections to the dispersion relations for the scalar and the electromagnetic field are computed within the framework of loop quantum gravity. These calculations are of preliminary character, as many assumptions enter whose validity remains to be studied more thoroughly. However they exemplify the problems and possibilities of making predictions based on loop quantum gravity that are in principle testable by experiment.
|
2 |
Approaches to quantum gravityFlori, Cecilia 16 June 2011 (has links)
In dieser Arbeit beschäftigen wir uns mit zwei Ansätzen zur Quantengravitation (QG), die einander konträr gegenüberstehen: - Erstens mit der Loop Quantum Gravity (LQG), einem eher konservativen Ansatz zur QG, dessen Startpunkt eine Hamiltonsche Formulierung der klassischen Allgemeinen Relativitätstheorie (ART) ist, - zweitens mit der sogenannten Topos-Theorie, angewandt auf die Allgemeine Relativitätstheorie, die die mathematischen Konzepte der Quantentheorie (und möglicherweise auch der ART) radikal umformuliert, was eine immense Redefinition von Konzepten wie Raum, Zeit und Raumzeit zur Folge hätte. Der Grund für die Wahl zweier so verschiedener Ansätzen als Gegenstand dieser Arbeit liegt in der Hoffnung begründet, dass sich diese beiden Ansätze auf einen gemeinsamen Ursprung zurückführen lassen können und somit gegenseitig ergänzen können. Im ersten Teil dieser Arbeit führen wir den allgemeinen Formalismus der LQG ein und gehen dabei insbesondere auf den semiklassischen Sektor der Theorie ein; insbesondere untersuchen wir die semiklassischen Eigenschaften des Volumenoperators. Dieser Operator spielt in der Quantendynamik der LQG eine tragende Rolle, da alle bekannten dynamischen Operatoren auf den Volumenoperator zurückgeführt werden können. Aus diesem Grund ist es auerordentlich wichtig zu überprüfen, dass der klassische Limes des Volumenoperators wirklich mit dem klassischen Volumen übereinstimmt. Anschließend beschäftigen wir uns mit sogenannten Spin Foam Modellen (SFM), welche als ein kovarianter oder Pfadintegralzugang zur kanonischen LQG angesehen werden können. Diese Spin Foam Modelle beruhen auf einer Langrange-Formulierung der LQG mittels einer kovarianten sum-over-histories Beschreibung. Die Entwicklung eines Lagrange-Zuganges zur LQG wurde motiviert durch die Tatsache, dass es in der kanonischen Formulierung der LQG überaus schwierig ist, Übergangsamplituden auszurechnen. Allerdings weichen die Spin Foam Modelle, die wir in dieser Arbeit behandeln in einem entscheidenden Punkt von den bisher in der Literatur diskutierten ab, da wir die Holst-Wirkung Holst [1996] und nicht die Palatini-Wirkung als Ausgangspunkt nehmen. Dies ermöglicht es uns, explizit gewisse Zwangsbedingungen zu lösen, was in den gegenwärtig diskutierten SFM problematisch scheint. Im zweiten Teil dieser Arbeit führen wir in die Topos-Theorie ein und rekapitulieren, wie diese Theorie benutzt werden kann, um die Quantentheorie derart umzuformulieren, dass eine konsistente Quanten-Logik definiert werden kann. Darüber hinaus definieren wir auch eine Topos-Beschreibung der Quantentheorie in der sum-over-histories Formulierung. Unser Ansatz entscheidet sich vom gegenwärtigen consistent-histories Ansatz vor allem dadurch, dass das Konzept der konsistenten Menge (eine Menge von Historien, die nicht mit sich selbst interferieren) keine zentrale Rolle spielt, während es in letzterem grundlegend ist. Diese Tatsache bietet einen interessanten Ausgangspunkt, da eine der Hauptschwierigkeiten im consistent-histories Ansatz darin besteht, die richtige konsistente Menge der Propositionen von Historien zu finden: Im allgemeinen gibt es viele solcher Mengen, und die meisten davon sind nicht miteinander kompatibel. Wir zeigen, dass in unserer Topos-Beschreibung der sum-over-histories Quantentheorie jeder Proposition von Historien Wahrheitswerte zugeteilt werden können; daher ist das Konzept einer konsistenten Menge von Propositionen redundant. Dies bedeutet, dass es im Rahmen einer Quantengravitationstheorie möglich sein könnte, jeder Proposition von vierdimensionalen Metriken (welche als allgemein relativistisches Analogon einer Historie angesehen werden können) einen Wahrheitswert zuzuweisen. / One of the main challenges in theoretical physics over the last five decades has been to reconcile quantum mechanics with general relativity into a theory of quantum gravity. However, such a theory has been proved to be hard to attain due to i) conceptual difficulties present in both the component theories (General Relativity (GR) and Quantum Theory); ii) lack of experimental evidence, since the regimes at which quantum gravity is expected to be applicable are far beyond the range of conceivable experiments. Despite these difficulties, various approaches for a theory of Quantum Gravity have been developed. In this thesis we focus on two such approaches: Loop Quantum Gravity and the Topos theoretic approach. The choice fell on these approaches because, although they both reject the Copenhagen interpretation of quantum theory, their underpinning philosophical approach to formulating a quantum theory of gravity are radically different. In particular LQG is a rather conservative scheme, inheriting all the formalism of both GR and Quantum Theory, as it tries to bring to its logical extreme consequences the possibility of combining the two. On the other hand, the Topos approach involves the idea that a radical change of perspective is needed in order to solve the problem of quantum gravity, especially in regard to the fundamental concepts of `space'' and `time''. Given the partial successes of both approaches, the hope is that it might be possible to find a common ground in which each approach can enrich the other.
|
Page generated in 0.1125 seconds