In order to reduce greenhouse gas (GHG) emissions, tackle climate change and move toward sustainable development, the central government in China has proposed low-carbon city development as the national strategy and relevant initiatives have been taken by local governments. This thesis analyses current low-carbon city programmes and planning approaches in China, identifies limitations and proposes a metabolic approach that could be used to account for physical resources, monitor GHG emissions and involve stakeholders in the planning process. There are currently two parallel programmes for low-carbon initiatives in China: the “Low-Carbon City” programme and the “Low-Carbon Eco-City” programme. Around thirty cities in the Coastal, Central and Western regions of China have been selected as the national pilot areas for these programmes. This widespread distribution marks a change the previous priority set on development in the Coastal region, meaning that more cities have opportunities to explore low-carbon pathways and obtain support from the state. The large number of cities involved shows China’s determination to transition to low-carbon development in different city contexts. The selected cities have set up local administrative groups to manage low-carbon development and have established integrated approaches to reduce GHG emissions from urban sectors such as energy, transportation, buildings and waste. Some plans have been developed by the cities themselves, while others have involved international cooperation. However, because of limited knowledge on low-carbon city development, an absence of established standards and procedures and the Chinese top-down planning system, low-carbon planning faces specific challenges, such as lack of information about GHG flows, GHG monitoring and stakeholder involvement. To overcome these challenges and improve low-carbon city approaches in China, this thesis proposes a holistic approach to low-carbon city development, by integrating Industrial Ecology into urban planning. Such work would benefit greatly from adopting a metabolic approach, within which a metabolic approach-based standard is used to understand low-carbon city from GHG flows; a DPSIR framework is used to address root causes of GHG emissions; and an Eco-Cycle Model is used to describe urban metabolism and account for physical resources, monitor GHG emissions and involve stakeholders in the planning process. The thesis also recommends better collaboration between relevant government departments and stakeholders. Moreover, instead of simply transferring approaches developed elsewhere, international cooperation needs to combine the local context and knowledge in China with international knowledge and experience. In return, experiences from China can help improve low-carbon city approaches in other parts of the world. / <p>QC 20150929</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-174076 |
Date | January 2015 |
Creators | Zhou, Guanghong |
Publisher | KTH, Industriell ekologi, Stockholm |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-IM-LIC ; 2015:01 |
Page generated in 0.0023 seconds