Return to search

Interaction of Molecular Contaminants with Low-k Dielectric Films and Metal Surfaces

Ultra low-k dielectric films are expected to widely replace SiO2 as the interlayer dielectric for the next-generation microelectronic devices. A challenge facing the integration of these dielectrics in manufacturing is their interactions with gaseous contaminants, such as moisture and isopropanol, and the resulting change in their properties. Moisture retained in the film not only has detrimental effect on the k value of the film but also causes reliability and adhesion problems due to gradual outgassing. The physical and chemical interactions of moisture with porous spin-on and chemical vapor deposited (CVD) dielectrics are investigated using temperature- and concentration-programmed exposure and purge sequence together with trace moisture analysis, using atmospheric pressure ionization mass spectrometry.The model compounds in this study are porous Methylsilsesquioxane and Black Diamond II films, deposited and treated under typical manufacturing conditions. Transmission Electron Microscope (TEM) studies showed that etching and ashing processes resulted in the formation of two layers, a damaged layer and non-damaged layer, which significantly changed moisture interaction properties.Moisture sorption and desorption studies showed that as compared to SiO2 these films not only have a higher uptake capacity but also a slower and more activated moisture removal process. This could be a significant problem in successful integration of these films in IC manufacturing process.A process model was developed that provided information on the mechanism and kinetics of moisture uptake and release in thin porous films. The model elucidated the effect of film properties on the contamination uptake as well as outgassing. The model is a valuable tool for designing an optimum process for contamination control and removal in porous films.Another concern in IC manufacturing is the outgassing of impurities of electropolished stainless steel (EPSS) surfaces used in UHP gas distribution system. Moisture interaction with EPSS surface is studied in sub ppb range. A fundamental model was developed to study the mechanism and kinetics of moisture uptake and release from EPSS. The model developed would be a valuable tool for designing an optimum process for contamination control and to predict the moisture dry down performance of large-scale, systems.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/196143
Date January 2007
CreatorsIqbal, Asad
ContributorsShadman, Farhang, Shadman, Farhang, Muscat, Anthony, Philipossian, Ara
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0019 seconds