Methylsilsesquioxane (MSQ) and organosilicate glass (OSG) are the materials under this study because they exhibit the dielectric constant values necessary for future IC technology requirements. Obtaining a low-k dielectric value is critical for the IC industry in order to cope time delay and cross talking issues. These materials exhibit attractive dielectric value, but there are problems replacing conventional SiO2, because of their chemical, mechanical and electrical instability after plasma processing. Several techniques have been suggested to mitigate process damage but supercritical silylation offers a rapid single repair step solution to this problem. Different ash and etch damaged samples were employed in this study to optimize an effective method to repair the low-k dielectric material and seal the surface pores via supercritical fluid processing with various trialkylchlorosilanes. Fourier transform infrared spectroscopy (FTIR), contact angle, capacitance- voltage measurements, and x-ray photoemission spectroscopy, dynamic secondary ion mass spectroscopy (DSIMS), characterized the films. The hydrophobicity and dielectric constant after exposure to elevated temperatures and ambient conditions were monitored and shown to be stable. The samples were treated with a series of silylating agents of the form R3-Si-Cl where R is an alkyl groups (e.g. ethyl, propyl, isopropyl). Reactivity with the surface hydroxyls was inversely proportional to the length of the alkyl group, perhaps due to steric effects. Contact angle measurements revealed that heating the films in ambient diminished hydrophobicity. Depth and surface profiling using (DSIMS) and (XPS) were utilized to develop a model for surface coverage.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc5216 |
Date | 05 1900 |
Creators | Nerusu, Pawan Kumar |
Contributors | Reidy, Richard, Mueller, Dennis, Banerjee, Rajarshi |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Use restricted to UNT Community, Copyright, Nerusu, Pawan Kumar, Copyright is held by the author, unless otherwise noted. All rights reserved. |
Page generated in 0.0025 seconds