Bioretention gardens are stormwater management practices that offer numerous water quantity and quality benefits. However, previous studies have reported inconsistent removal of nitrogen and phosphorous in these systems. The first phase of this research involved the construction and monitoring of ten vegetated, mesoscale, bioretention cells in a field setting to provide a comparison of the performance of five alternative designs intended to provide nutrient removal. Results indicated that concentrations of total nitrogen and total phosphorous may be reduced by up to 53 and 79%, respectively, in specially designed bioretention gardens. In the second phase of the research, a GIS-based site selection tool was used to identify areas suitable for bioretention implementation based on physical site requirements. Applying this tool to selected urban catchments demonstrated that bioretention gardens may be integrated into existing urban landscapes on a scale large enough to accommodate runoff and associated nutrient loads from small (<15mm) storms.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OGU.10214/2971 |
Date | 12 September 2011 |
Creators | Randall, Mark |
Contributors | Bradford, Andrea |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0017 seconds