Return to search

Ultra-Wideband Transceiver with Error Correction for Cortical Interfaces in NanometerCMOS Process

This dissertation reports a high-speed wideband wireless transmission solution for the tight power constraints of cortical interface application. The proposed system deploysImpulse Radio Ultra-wideband (IR-UWB) technique to achieve very high-rate communication. However, impulse radio signals suffer from significant attenuation within the body,and power limitations force the use of very low-power receiver circuits which introduce additional noise and jitter. Moreover, the coils’ self-resonance has to be suppressed to minimize the pulse distortion and inter-symbol interference, adding significant attenuation. To compensate these losses, an Error correction code (ECC) layer is added for functioning reliably to the system. The performance evaluation is made by modeling a pair of physically fabricated coils, and the results show that the ECC is essential to obtain the system’s reliability.
Furthermore, the gm/ID methodology, which is based on the complete exploration ofall inversion regions that the transistors are biased, is studied and explored for optimizingthe system at the circuit-level. Specific focuses are on the RF blocks: the low noise am-plifier (LNA) and the injection-locked voltage controlled oscillator (IL-VCO). Through the analytical deduction of the circuit’s features as the function of the gm/ID for each transistor, it is possible to select the optimum operating region for the circuit to achieve the target specification. Other circuit blocks, including the phase shifter, frequency divider,mixer, etc. are also described and analyzed. The prototype is fabricated in a 65-nm CMOS(Complementary Metal-Oxide-Semiconductor) process.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-6923
Date01 May 2017
CreatorsLuo, Yi
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.002 seconds