Return to search

Modelos de séries temporais de dados de contagem baseados na distribuição Poisson Dupla / Count data time series models based on Double Poisson distribution

Dados de s´eries temporais s~ao originados a partir de estudos em que se reportam, por exemplo, taxas de mortalidade, n´umero de hospitaliza¸c~oes, de infec¸c~oes por alguma doen¸ca ou outro evento de interesse, em per´?odos definidos (dia, semana, m^es ou ano), objetivando-se observar tend^encias, sazonalidades ou fatores associados. Dados de contagem s~ao aqueles representados pelas vari´aveis quantitativas discretas, ou seja, observa¸c~oes que assumem valores inteiros, no intervalo {0, 1, 2, 3, ...}, por exemplo, o n´umero de filhos de casais residentes em um bairro. Diante dessa particularidade, ferramentas estat´?sticas adequadas devem ser utilizadas, e modelos baseados na distribui¸c~ao de Poisson apresentam-se como op¸c~oes mais indicadas do que os baseados nos m´etodos propostos por Box e Jenkins (2008), usualmente utilizados para an´alise de dados cont´?nuos, mas empregados para dados discretos, ap´os transforma¸c~oes logar´?tmicas. Uma limita¸c~ao da distribui¸c~ao de Poisson ´e que ela assume m´edia e vari^ancia iguais, sendo um obst´aculo nos casos em que h´a superdispers~ao (vari^ancia maior que a m´edia) ou subdispers~ao (vari^ancia menor que a m´edia). Diante disso, a distribui¸c~ao Poisson Dupla, proposta por Efron (1986), surge como alternativa, pois permite se estimarem os par^ametros de m´edia e vari^ancia, nos casos em que a vari^ancia dos dados ´e menor, igual ou maior que a m´edia, fornecendo grande flexibilidade aos modelos. Este trabalho teve como objetivo principal o desenvolvimento de modelos Bayesianos de s´eries temporais para dados de contagem, utilizando-se distribui¸c~oes de probabilidade para vari´aveis discretas, tais como de Poisson e Poisson Dupla. Al´em disso, foi introduzido um modelo baseado na distribui¸c~ao Poisson Dupla para dados de contagem com excesso de zeros. Os resultados obtidos pelo ajuste dos modelos de s´eries temporais baseados na distribui¸c~ao Poisson Dupla foram comparados com aqueles obtidos por meio do uso da distribui¸c~ao de Poisson. Como aplica¸c~oes principais, foram apresentados resultados obtidos pelo ajuste de modelos para dados de registros de acidentes com picadas de cobras, no Estado de S~ao Paulo, e picadas de escorpi~oes, na cidade de Ribeir~ao Preto, SP, entre os anos de 2007 e 2014. Com rela¸c~ao a esta ´ultima aplica¸c~ao, foram consideradas covari´aveis referentes a dados clim´aticos, como temperaturas m´aximas e m´?nimas m´edias mensais e precipita¸c~ao. Nas situa¸c~oes em que a vari^ancia era diferente da m´edia, modelos baseados na distribui¸c~ao Poisson Dupla mostraram melhor ajuste aos dados, quando comparados aos modelos de Poisson. / Time series data are derived from studies in which there are reported mortality, number of hospitalizations infections by disease or other event of interest per day, week, month or year, in order to observe trends, seasonality or associated factors. Count data are represented by discrete quantitative variables, i.e. observations that take integer values in the range {0, 1, 2, 3, ...}. In view of this particular characteristic, such data must be analyzed by adequate statistical tools and the Poisson distribution is an option for modeling, being more suitable than models based on methods proposed by Box and Jenkins (2008), usually applied for continuous data, but used in the modeling of discrete data after logarithmic transformation. A limitation of the Poisson distribution is that it assumes equal mean and variance being an obstacle in cases which there are data overdispersion (variance higher than mean) or underdispersion (variance lower than mean). Therefore the Double Poisson distribution, proposed by Efron (1986), is an alternative because it allows to estimate the mean and variance parameters in cases wich variance of the data is lower, equal, or higher than mean providing great flexibility to the models. This work aims to develop time series models for count data, under Bayesian approach using probability distributions for discrete variables such as Poisson and Double Poisson. Furthermore it will be introduced a zero-inflated Double Poisson model to excess zeros counting data. The results obtained by adjusting the time series models based on Double Poisson distribution are compared with those obtained by considering the Poisson distribution. As main applications modeling of snake bites reports in the State of S~ao Paulo and scorpion stings in the city of Ribeir~ao Preto considering covariates as maximum and minimum average monthly temperatures and rainfall among the years 2007 and 2014 will be presented. Regression models based on double Poisson distribution showed a better fit to the data, when compared to Poisson models.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-06062017-170620
Date30 November 2016
CreatorsAragon, Davi Casale
ContributorsMartinez, Edson Zangiacomi
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0025 seconds