Return to search

New continuous distributions applied to lifetime data and survival analysis

Submitted by Isaac Francisco de Souza Dias (isaac.souzadias@ufpe.br) on 2016-07-08T19:03:53Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Tese_CiceroDias_VersaoCD.pdf: 1665746 bytes, checksum: bf5520194ce2f18a505403954f133c62 (MD5) / Made available in DSpace on 2016-07-08T19:03:53Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Tese_CiceroDias_VersaoCD.pdf: 1665746 bytes, checksum: bf5520194ce2f18a505403954f133c62 (MD5)
Previous issue date: 2016-02-23 / Statistical analysis of lifetime data is an important topic in engineering, biomedical, social sciences and others areas. There is a clear need for extended forms of the classical distributions to obtain more flexible distributions with better fits. In this work, we study and propose new distributions and new classes of continuous distributions. We present the work in three independentes parts. In the first one, we study with some details a lifetime model of the beta generated class proposed by Eugene; Lee; Famoye (2002). The new distribution is called the beta Nadarajah-Haghighi distribution, which can be used to model survival data. Its failure rate function is quite flexible and takes several forms depending on its parameters. The proposed model includes as special models several important distributions discussed in the literature, such as the exponential, generalized exponential (GUPTA; KUNDU, 1999), extended exponential (NADARAJAH; HAGHIGHI, 2011) and exponential-type (LEMONTE, 2013) distributions. We provide a comprehensive mathematical treatment of the new distribution and obtain explicit expressions for the moments, generating and quantile functions, incomplete moments, order statistics and entropies. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is derived. We fit the proposed model to a real data set to prove empirically its flexibility and potentiality. In the second part, we study general mathematical properties of a new generator of continuous distributions with three extra shape parameters called the exponentiated Marshal-Olkin family. We present some special models of the new class and some of its mathematical properties including moments and generating function. The method of maximum likelihood is used for estimating the model parameters. We illustrate the usefulness of the new distributions by means of two applications to real data sets. In the third part, we propose another new class of distributions based on the distribution introduced by Nadarajah and Haghighi (2011). We study some mathematical properties of this new class called Nadarajah-Haghighi-G (NH-G) family of distributions. Some special models are presented and we obtain explicit expressions for the quantile function, ordinary and incomplete moments, generating function and order statistics. The estimation of the model parameters is explored by maximum likelihood and we illustrate the flexibility of the new family with two applications to real data. / Análise estatística de dados de tempo de vida é um importante tópico em engenharia,biomedicina, ciências sociais, dentre outras áreas. Existe uma clara necessidade de se estender formas das clássicas distribuições para obter distribuições mais flexíveis com melhores ajustes. Neste trabalho, estudamos e propomos novas distribuições e novas classes de istribuições contínuas. Nós apresentamos o trabalho em três partes independentes. Na primeira, nós estudamos com alguns detalhes um modelo de tempo de vida da classe dos modelos beta generalizados proposto por Eugene; Lee; Famoye (2002). A nova distribuição é denominada de beta Nadarajah-Haghighi, a qual pode ser usada para modelar dados de sobrevivência. Sua função de taxa de falha é bastante flexível podendo ser de diversas formas dependendo dos seus parâmetros. O modelo proposto inclui como casos especiais muitas importantes distribuições discutidas na literatura, tais como as distribuições exponencial, exponential generalizada (GUPTA; KUNDU, 1999), exponencial extendida (NADARAJAH; HAGHIGHI, 2011) e a tipo exponencial (LEMONTE, 2013). Nós fornecemos um tratamento matemático abrangente da nova distribuição e obtemos explícitas expressões para os momentos, funções geratriz de momentos e quantílica, momentos incompletos, estatísticas de ordem e entropias. O método de máxima verossimilhança é usado para estimar os parâmetros do modelo e a matriz de informação observada é derivada. Nós ajustamos o modelo proposto para um conjunto de dados reais para provar a empiricamente sua flexibilidade e potencialidade. Na segunda parte, nós estudamos as propriedades matemáticas gerais de um novo gerador de distribuições contínuas com três parâmetros de forma extras chamada de família de distribuições MarshalOlkin exponencializada. Nós apresentamos alguns modelos especiais da nova classe e algumas das suas propriedades matemáticas incluindo momentos e função geratriz de momentos. O método de máxima verossimilhança é utilizado para estimação dos parâmetros do modelo. Nós ilustramos a utilidade da nova distribuição por meio de duas aplicações a conjuntos de dados reais. Na terceira parte, nós propomos outra nova classe distribuições baseada na distribuição introduzida por Nadarajah e Haghighi(2011). Nós estudamos algumas propriedades matemáticas dessa nova classe denominada Nadarajah-Haghighi-G (NH-G) família de distribuições. Alguns modelos especiais são apresentados e obtemos explícitas expressões para a função quantília, momentos ordinários e incompletos, função geratriz e estatística de ordem. A estimação dos parâmetros do modelo é explorada por máxima verossimilhança e nós ilustramos a flexibilidade da nova família com duas aplicações a dados reais.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/17307
Date23 February 2016
CreatorsDIAS, Cícero Rafael Barros
ContributorsCORDEIRO, Gauss Moutinho
PublisherUniversidade Federal de Pernambuco, Programa de Pos Graduacao em Estatistica, UFPE, Brasil
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE
RightsAttribution-NonCommercial-NoDerivs 3.0 Brazil, http://creativecommons.org/licenses/by-nc-nd/3.0/br/, info:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds