Malgré le mécanisme de base du transport protonique (PT) dans l'eau ait été proposé en 1806, à ce jour il n'existe pas de théorie complète qui décrive la protolyse. Ce phénomène est à la base du fonctionnement des batteries à hydrogène et de nombreux processus biologiques. Grâce à la technique de dynamique moléculaire Car-Parrinello (CPMD) et à l'aide de l'application d'un champ electrique (EF), une partie de cette thèse a été consacrée à l'étude du PT dans deux phase de la glace: la phase Ih et sa contrepartie ferroélectrique, la glace XI. Certains mécanismes ont été révélés: le rôle joué par les oxygènes lorsque se produit le PT et la contribution du (dés)ordre afin d'assister ce processus [1,2]. Le phénomène du PT est aussi à la base de nombreaux convertisseurs d'énergie constitués par le méthanol tels que le Direct Methanol Fuel Cells et les membranes Nafion. Afin de révéler la nature intime du PT dans le méthanol liquide, une série de simulations CPMD ont été menées sous l'effet d'un EF extérieur. De cette façon il a été possible de comparer le rôle joué par les liasons hydrogène afin d'assister le PT [3]. De plus, quand les intensités du champ sont plus élevées que celles qui donnent lieu au PT, certaines réactions chimiques ont été observées dans le même échantillon "numérique" du méthanol. En exploitant des paramètres typique de la "Théorie de la fonctionnelle de la densité conceptuelle", il a été possible de clarifier les conditions qui donnent lieu à ces réactions chimiques. Enfin, afin de quantifier la contribution du EF à la formation de méthane et de formaldéhyde dans le système, des simulations de métadynamique en conjonction à ceux ab initio ont été menées. / Although the basic mechanism of the proton transfer (PT) phenomenon in water has been envisaged in 1806, nowadays does not exist a detailed theoretical framework that envelop the protolysis process. This phenomenon is at the base of the operation of hydrogen batteries, as well as of many biological processes. Via the Car-Parrinello Molecular Dynamics (CPMD) technique and by means of the application of an electric field (EF), part of this thesis has been devoted to the detailed study of PT in two ice phases: ice Ih and its ferroelectric counterpart, ice XI. Several previously unknown mechanisms have been shown. As an example, the role played by the oxygens when a PT occurs and the contribution due to (dis)order in assisting this process [1,2]. The PT phenomenon is also at the base of the functioning of some methanol-based energy converters such as Nafion membranes. To the aim of disclosing the intimate nature of PT in liquid methanol, a series of CPMD simulations have been carried out by applying an external EF; the role played by the H-bond network have been also compared with the similar PT mechanism in water [3]. At field strengths higher than those leading to PT, several chemical reactions have been observed in this sample. By exploiting the conceptual Density Functional Theory framework, it has been possible to clarify the circumstances under which a given chemical reaction occurs. Moreover, in order to disclose the role played by the EF in assisting chemical reactions, the mechanism leading to the formation of formaldehyde and methane in the sample has been studied with metadynamics approaches in conjuction with the ab initio ones.
Identifer | oai:union.ndltd.org:theses.fr/2016PA066061 |
Date | 04 March 2016 |
Creators | Cassone, Giuseppe |
Contributors | Paris 6, Università degli studi (Messine, Italie), Saitta, Antonino Marco, Savasta, Salvatore |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds