L'objectif de cette thèse est d'étudier un système modélisant l'évolution d'écoulements bi-fluides non miscibles dans un domaine borné, avec la perspective de mieux comprendre et de prédire le comportement de bulles dans les c{\oe}urs de réacteurs nucléaires. Ce système, appelé DLMN, est construit à partir des équations de Navier-Stokes sous l'hypothèse d'un nombre de Mach très faible. Dans le cadre d'études préliminaires, on établit des résultats d'existence et d'unicité de solutions pour des données initiales régulières (de type Sobolev) et pour différents systèmes d'équations aux dérivées partielles non-linéaires couplant équations hyperboliques, paraboliques et elliptiques. En particulier, dans le cas du modèle abstrait de vibration de bulles (ABV), on établit un certain nombre de propriétés vérifiées par les solutions, lesquelles sont explicitées en dimension $1$. On s'attache ensuite à simuler ces solutions, en utilisant des schémas adaptés à la régularité des données. Pour le cas des données régulières, on construit un schéma d'ordre $2$ inconditionnellement stable et basé sur la méthode des caractéristiques. En revanche, en présence de discontinuités, on associe un schéma non diffusif à un algorithme de raffinement adaptatif de maillages.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00547865 |
Date | 13 December 2010 |
Creators | Penel, Yohan |
Publisher | Université Paris-Nord - Paris XIII |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds