Return to search

Estimations a posteriori pour l'équation de convection-diffusion-réaction instationnaire et applications aux volumes finis

On considère l'équation de convection-diffusion-réaction instationnaire. On s'intéresse à la dérivation d'estimations d'erreur a posteriori pour la discrétisation de cette équation par la méthode des volumes finis centrés par mailles en espace et un schéma d'Euler implicite en temps. Les estimations, qui sont établies dans la norme d'énergie, bornent l'erreur entre la solution exacte et une solution post-traitée à l'aide de reconstructions H(div, Ω)-conformes du flux diffusif et du flux convectif, et d'une reconstruction H_0^1(Ω)-conforme du potentiel. On propose un algorithme adaptatif qui permet d'atteindre une précision relative fixée par l'utilisateur en raffinant les maillages adaptativement et en équilibrant les contributions en espace et en temps de l'erreur. On présente également des essais numériques. Enfin, on dérive une estimation d'erreur a posteriori dans la norme d'énergie augmentée d'une norme duale de la dérivée en temps et de la partie antisymétrique de l'opérateur différentiel. Cette nouvelle estimation est robuste dans des régimes dominés par la convection et des bornes inférieures locales en temps et globales en espace sont également obtenues.

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00794392
Date17 December 2012
CreatorsChalhoub, Nancy
PublisherUniversité Paris-Est
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0016 seconds