Spelling suggestions: "subject:"problèmes parabolique"" "subject:"problèmes métaboliques""
1 |
Estimations a posteriori pour l'équation de convection-diffusion-réaction instationnaire et applications aux volumes finisChalhoub, Nancy 17 December 2012 (has links) (PDF)
On considère l'équation de convection-diffusion-réaction instationnaire. On s'intéresse à la dérivation d'estimations d'erreur a posteriori pour la discrétisation de cette équation par la méthode des volumes finis centrés par mailles en espace et un schéma d'Euler implicite en temps. Les estimations, qui sont établies dans la norme d'énergie, bornent l'erreur entre la solution exacte et une solution post-traitée à l'aide de reconstructions H(div, Ω)-conformes du flux diffusif et du flux convectif, et d'une reconstruction H_0^1(Ω)-conforme du potentiel. On propose un algorithme adaptatif qui permet d'atteindre une précision relative fixée par l'utilisateur en raffinant les maillages adaptativement et en équilibrant les contributions en espace et en temps de l'erreur. On présente également des essais numériques. Enfin, on dérive une estimation d'erreur a posteriori dans la norme d'énergie augmentée d'une norme duale de la dérivée en temps et de la partie antisymétrique de l'opérateur différentiel. Cette nouvelle estimation est robuste dans des régimes dominés par la convection et des bornes inférieures locales en temps et globales en espace sont également obtenues.
|
2 |
Estimations a posteriori pour l'équation de convection-diffusion-réaction instationnaire et applications aux volumes finis / A posteriori error estimates for the time-dependent convection-diffusion-reaction equation and application to the finite volume methodsChalhoub, Nancy 17 December 2012 (has links)
On considère l'équation de convection--diffusion--réaction instationnaire. On s'intéresse à la dérivation d'estimations d'erreur a posteriori pour la discrétisation de cette équation par la méthode des volumes finis centrés par mailles en espace et un schéma d'Euler implicite en temps. Les estimations, qui sont établies dans la norme d'énergie, bornent l'erreur entre la solution exacte et une solution post-traitée à l'aide de reconstructions $Hdiv$-conformes du flux diffusif et du flux convectif, et d'une reconstruction $H^1_0(Omega)$-conforme du potentiel. On propose un algorithme adaptatif qui permet d'atteindre une précision relative fixée par l'utilisateur en raffinant les maillages adaptativement et en équilibrant les contributions en espace et en temps de l'erreur. On présente également des essais numériques. Enfin, on dérive une estimation d'erreur a posteriori dans la norme d'énergie augmentée d'une norme duale de la dérivée en temps et de la partie antisymétrique de l'opérateur différentiel. Cette nouvelle estimation est robuste dans des régimes dominés par la convection et des bornes inférieures locales en temps et globales en espace sont également obtenues / We consider the time-dependent convection--diffusion--reaction equation. We derive a posteriori error estimates for the discretization of this equation by the cell-centered finite volume scheme in space and a backward Euler scheme in time. The estimates are established in the energy norm and they bound the error between the exact solution and a locally post processed approximate solution, based on $Hdiv$-conforming diffusive and convective flux reconstructions, as well as an $H^1_0(Omega)$-conforming potential reconstruction. We propose an adaptive algorithm which ensures the control of the total error with respect to a user-defined relative precision by refining the meshes adaptively while equilibrating the time and space contributions to the error. We also present numerical experiments. Finally, we derive another a posteriori error estimate in the energy norm augmented by a dual norm of the time derivative and the skew symmetric part of the differential operator. The new estimate is robust in convective-dominated regimes and local-in-time and global-in-space lower bounds are also derived
|
3 |
Option prices in stochastic volatility models / Prix d’options dans les modèles à volatilité stochastiqueTerenzi, Giulia 17 December 2018 (has links)
L’objet de cette thèse est l’étude de problèmes d’évaluation d’options dans les modèles à volatilité stochastique. La première partie est centrée sur les options américaines dans le modèle de Heston. Nous donnons d’abord une caractérisation analytique de la fonction de valeur d’une option américaine comme l’unique solution du problème d’obstacle parabolique dégénéré associé. Notre approche est basée sur des inéquations variationelles dans des espaces de Sobolev avec poids étendant les résultats récents de Daskalopoulos et Feehan (2011, 2016) et Feehan et Pop (2015). On étudie aussi les propriétés de la fonction de valeur d’une option américaine. En particulier, nous prouvons que, sous des hypothèses convenables sur le payoff, la fonction de valeur est décroissante par rapport à la volatilité. Ensuite nous nous concentrons sur le put américaine et nous étendons quelques résultats qui sont bien connus dans le monde Black-Scholes. En particulier nous prouvons la convexité stricte de la fonction de valeur dans la région de continuation, quelques propriétés de la frontière libre, la formule de Prime d’Exercice Anticipée et une forme faible de la propriété du smooth fit. Les techniques utilisées sont de type probabiliste. Dans la deuxième partie nous abordons le problème du calcul numérique du prix des options européennes et américaines dans des modèles à volatilité stochastiques et avec sauts. Nous étudions d’abord le modèle de Bates-Hull-White, c’est-à-dire le modèle de Bates avec un taux d’intérêt stochastique. On considère un algorithme hybride rétrograde qui utilise une approximation par chaîne de Markov (notamment un arbre “avec sauts multiples”) dans la direction de la volatilité et du taux d’intérêt et une approche (déterministe) par différence finie pour traiter le processus de prix d’actif. De plus, nous fournissons une procédure de simulation pour des évaluations Monte Carlo. Les résultats numériques montrent la fiabilité et l’efficacité de ces méthodes. Finalement, nous analysons le taux de convergence de l’algorithme hybride appliqué à des modèles généraux de diffusion avec sauts. Nous étudions d’abord la convergence faible au premier ordre de chaînes de Markov vers la diffusion sous des hypothèses assez générales. Ensuite nous prouvons la convergence de l’algorithme: nous étudions la stabilité et la consistance de la méthode hybride par une technique qui exploite les caractéristiques probabilistes de l’approximation par chaîne de Markov / We study option pricing problems in stochastic volatility models. In the first part of this thesis we focus on American options in the Heston model. We first give an analytical characterization of the value function of an American option as the unique solution of the associated (degenerate) parabolic obstacle problem. Our approach is based on variational inequalities in suitable weighted Sobolev spaces and extends recent results of Daskalopoulos and Feehan (2011, 2016) and Feehan and Pop (2015). We also investigate the properties of the American value function. In particular, we prove that, under suitable assumptions on the payoff, the value function is nondecreasing with respect to the volatility variable. Then, we focus on an American put option and we extend some results which are well known in the Black and Scholes world. In particular, we prove the strict convexity of the value function in the continuation region, some properties of the free boundary function, the Early Exercise Price formula and a weak form of the smooth fit principle. This is done mostly by using probabilistic techniques.In the second part we deal with the numerical computation of European and American option prices in jump-diffusion stochastic volatility models. We first focus on the Bates-Hull-White model, i.e. the Bates model with a stochastic interest rate. We consider a backward hybrid algorithm which uses a Markov chain approximation (in particular, a “multiple jumps” tree) in the direction of the volatility and the interest rate and a (deterministic) finite-difference approach in order to handle the underlying asset price process. Moreover, we provide a simulation scheme to be used for Monte Carlo evaluations. Numerical results show the reliability and the efficiency of the proposed methods.Finally, we analyze the rate of convergence of the hybrid algorithm applied to general jump-diffusion models. We study first order weak convergence of Markov chains to diffusions under quite general assumptions. Then, we prove the convergence of the algorithm, by studying the stability and the consistency of the hybrid scheme, in a sense that allows us to exploit the probabilistic features of the Markov chain approximation
|
4 |
Blow-up pour des problèmes paraboliques semi linéaires avec un terme source localisé / Complete blow-up for a semilinear parabolic problem with a localized non linear termSawangtong, Panumart 13 December 2010 (has links)
On étudie l'existence de blow-up et l'ensemble des points de blow-up pour une équation de type chaleur dégénérée ou non avec un terme source uniforme fonction nonlinéaire de la température instantanée en un point fixé du domaine. L'étude est conduite par les méthodes d'analyse classique (fonctions de Green, développements en fonctions propres, principe du maximum) ou fonctionnelle (semi-groupes d'opérateurs linéaires). / We study existence of blow-up and blow-up sets for a (degenerate or not) heat-like equation with a uniform source term non linear function of the instantaneous temperature at a given point of the domain. The techniques are relevant from either classical analysis (Green functions, eigenfunction expansions, maximum principle) or functional analysis (semi-groups of linear operators).
|
5 |
Contrôle optimal de quelques phénomènes de diffusion en domaines pollués / Pointwise optimal control for some diffusion phenomena in polluted areaMahoui, Sihem 01 July 2018 (has links)
Dans ce travail, on s'intéresse à l'analyse mathématique et au contrôle optimal pour des problèmes de diffusion relevant de certains domaines comme l'écologie ou l'environnement et comportant des termes de pollution inconnus en général. De plus, on souhaite agir sur le système en un seul point du domaine considéré pour des raisons de coût. La modélisation de ces problèmes se traduit généralement par un système de type parabolique avec donnée manquante (initiale ou aux limites) représentant la pollution, et où l'on introduit une fonction de contrôle de ce système. La méthode suivie pour résoudre ces problèmes est celle du contrôle à moindres regrets développée par J.-L. Lions et bien adaptée aux problèmes à données manquantes.Plus précisément, on est concerné par des problèmes de type parabolique qui décrivent la diffusion d'un fluide (eau) contaminé dans un domaine (une lagune ou un estuaire) par une pollution ayant son origine sur une partie du bord. De plus, on considère que la fonction source (le contrôle) est localisée en un point, c'est ce qu'on appelle le contrôle ponctuel. On cherche alors le (ou les) contrôle(s) qui peuvent améliorer la situation au lieu de la laisser à l'abandon (sans contrôle).Les solutions ne sont pas des fonctions régulières et ne peuvent être considérées qu'au sens faible. Deux méthodes sont utilisées: la première est la méthode de transposition de Lions-Magenes, détaillée au chapitre 3 de la thèse, et la deuxième méthode consiste à régulariser la masse de Dirac (le support du contrôle est un point) présentée au chapitre4. Pour les deux méthodes, on montre l'existence d'une solution faible et on établit un système d'optimalité singulier (SOS) du contrôle ponctuel à moindres regrets.Un dernier chapitre est consacré aux schémas numériques associés au problème de contrôle ponctuel à moindres regrets, où l'on obtient des estimations d'erreur par la méthode des éléments finis. / In this thesis, we are interested in mathematical analysis and optimal control of diffusion problems where there are pollution terms. In addition, we want to act on the system in a single point of the domain for cost reasons. The systems being studied are parabolic with missing (initial or boundary) data representing pollution, where we introduce a control function. The method of low-regret control of J.-L. Lions, used here for the first time to the pointwise control, seems to be well suited. We then look for the control which can improve the situation instead of doing nothing (no control).Solutions are not regular functions and can only be considered in the weak sense. Two methods are used here: the first one is the method of transposition of Lions-Magenes, detailed in Chapter 3 of the thesis, and the second method consists in regularizing the Dirac mass, presented in chapter 4. Each one of the two methods offers a new point of view. In particular, the functional spaces where the existence of a solution is obtained are different. For both methods, however, a singular optimality system is established for the low-regret pointwise control.A final chapter is devoted to the numerical schemes associated to the low-regret pointwise optimal control, where we obtain error estimates using finite elements method (FEM).
|
6 |
Étude de quelques problèmes elliptiques et paraboliques quasi-linéaires avec singularités / Study of some quasilinear and singular elliptic and parabolic problemsSauvy, Paul 04 December 2012 (has links)
Cette thèse s’inscrit dans le domaine mathématique de l’analyse des équations aux dérivées partielles non-linéaires. Plus précisément, nous avons fait ici l’étude de problèmes quasi-linéaires singuliers. Le terme "singulier" fait référence à l’intervention d’une non-linéarité qui explose au bord du domaine où ’équation est posée. La présence d’une telle singularité entraîne un manque de régularité et donc de compacité des solutions qui ne nous permet pas d’appliquer directement les méthodes classiques de l’analyse non-linéaire pour démontrer l’existence de solutions et discuter des propriétés de régularité et de comportement asymptotique de ces solutions. Pour contourner cette difficulté, nous sommes amenés à établir des estimations a priori très fines au voisinage du bord du domaine en combinant diverses méthodes : méthodes de monotonie (reliée au principe du maximum), méthodes variationnelles, argument de convexité, méthodes de point fixe et semi-discrétisation en temps. A travers, l’étude de trois problèmes-modèle faisant intervenir l’opérateur p-Laplacien, nous avons montré comment ces différentes méthodes pouvaient être mises en œuvre. Les résultats que nous avons obtenus sont décrits dans les trois chapitres de cette thèse : Dans le Chapitre I, nous avons étudié un problème d’absorption elliptique singulier. En utilisant des méthodes de sur- et sous solutions et des méthodes variationnelles, nous établissons des résultats d’existence de solutions. Par des méthodes de comparaison locale, nous démontrons également la propriété de support compact de ces solutions, pour de fortes singularités. Dans le Chapitre II, nous étudions le cas d’un système d’équations quasi-linéaires singulières. Par des arguments de point fixe et de monotonie, nous démontrons deux résultats généraux d’existence de solutions. Dans un deuxième temps, nous faisons une analyse plus détaillée de systèmes du type Gierer-Meinhardt modélisant des phénomènes biologiques. Des résultats d’unicité ainsi que des estimations précises sur le comportement des solutions sont alors obtenus. Dans le Chapitre III, nous faisons l’étude d’un problème d’absorption, parabolique singulier. Nous établissons par une méthode de semi-discrétisation en temps des résultats d’existence de solutions. Grâce à des inégalités d’énergie, nous démontrons également l’extinction en temps fini de ces solutions. / This thesis deals with the mathematical field of nonlinear partial differential equations analysis. More precisely, we focus on quasilinear and singular problems. By singularity, we mean that the problems that we have considered involve a nonlinearity in the equation which blows-up near the boundary. This singular pattern gives rise to a lack of regularity and compactness that prevent the straightforward applications of classical methods in nonlinear analysis used for proving existence of solutions and for establishing the regularity properties and the asymptotic behavior of the solutions. To overcome this difficulty, we establish estimations on the precise behavior of the solutions near the boundary combining several techniques : monotonicity method (related to the maximum principle), variational method, convexity arguments, fixed point methods and semi-discretization in time. Throughout the study of three problems involving the p-Laplacian operator, we show how to apply this different methods. The three chapters of this dissertation the describes results we get :– In Chapter I, we study a singular elliptic absorption problem. By using sub- and super-solutions and variational methods, we prove the existence of the solutions. In the case of a strong singularity, by using local comparison techniques, we also prove that the compact support of the solution. In Chapter II, we study a singular elliptic system. By using fixed point and monotonicity arguments, we establish two general theorems on the existence of solution. In a second time, we more precisely analyse the Gierer-Meinhardt systems which model some biological phenomena. We prove some results about the uniqueness and the precise behavior of the solutions. In Chapter III, we study a singular parabolic absorption problem. By using a semi-discretization in time method, we establish the existence of a solution. Moreover, by using differential energy inequalities, we prove that the solution vanishes in finite time. This phenomenon is called "quenching".
|
7 |
Blow-up pour des problèmes paraboliques semi-linéaires avec un terme source localiséSawangtong, Panumart 13 December 2010 (has links) (PDF)
On étudie l'existence de 'blow-up' et l'ensemble des points de 'blow-up' pour une équation de type chaleur dégénérée ou non avec un terme source uniforme fonction non linéaire de la température instantanée en un point fixé du domaine. L'étude est conduite par les méthodes d'analyse classique (fonction de Green, développements en fonctions propres, principe du maximum) ou fonctionnelle (semi-groupes d'opérateurs linéaires).
|
Page generated in 0.0685 seconds