• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • Tagged with
  • 14
  • 14
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient Variable Mesh Techniques to solve Interior Layer Problems

Mbayi, Charles K. January 2020 (has links)
Philosophiae Doctor - PhD / Singularly perturbed problems have been studied extensively over the past few years from different perspectives. The recent research has focussed on the problems whose solutions possess interior layers. These interior layers appear in the interior of the domain, location of which is difficult to determine a-priori and hence making it difficult to investigate these problems analytically. This explains the need for approximation methods to gain some insight into the behaviour of the solution of such problems. Keeping this in mind, in this thesis we would like to explore a special class of numerical methods, namely, fitted finite difference methods to determine reliable solutions. As far as the fitted finite difference methods are concerned, they are grouped into two categories: fitted mesh finite difference methods (FMFDMs) and the fitted operator finite difference methods (FOFDMs). The aim of this thesis is to focus on the former. To this end, we note that FMFDMs have extensively been used for singularly perturbed two-point boundary value problems (TPBVPs) whose solutions possess boundary layers. However, they are not fully explored for problems whose solutions have interior layers. Hence, in this thesis, we intend firstly to design robust FMFDMs for singularly perturbed TPBVPs whose solutions possess interior layers and to improve accuracy of these approximation methods via methods like Richardson extrapolation. Then we extend these two ideas to solve such singularly perturbed TPBVPs with variable diffusion coefficients. The overall approach is further extended to parabolic singularly perturbed problems having constant as well as variable diffusion coefficients. / 2023-08-31
2

Homogenization of Partial Differential Equations using Multiscale Convergence Methods

Johnsen, Pernilla January 2021 (has links)
The focus of this thesis is the theory of periodic homogenization of partial differential equations and some applicable concepts of convergence. More precisely, we study parabolic problems exhibiting both spatial and temporal microscopic oscillations and a vanishing volumetric heat capacity type of coefficient. We also consider a hyperbolic-parabolic problem with two spatial microscopic scales. The tools used are evolution settings of multiscale and very weak multiscale convergence, which are extensions of, or closely related to, the classical method of two-scale convergence. The novelty of the research in the thesis is the homogenization results and, for the studied parabolic problems, adapted compactness results of multiscale convergence type.
3

Problemas parabólicos selineares singularmente não autônomos com expoentes críticos / Semilinear parabolic problems singularity non autonomous with critical exponents

Nascimento, Marcelo Jose Dias 15 February 2007 (has links)
Neste trabalho estudamos problemas de evolução da forma \'d \' úpsilond\' SUP. \' úpsilon\' t\'\' + A (t,\'úpsilon\' )\' úpsilon\' = f(t,\'úpsilon\' ) \'úpsilon\'(0) = \' \' úpsilon\' IND. 0\' \', em um espaço de Banach X onde A(t, \'úpsilon\' ) : D \'está contido em\' X \'SETA \' X é um operador linear fechado e setorial para cada (t, \' úpsilon\' ). Quando o operador A(t, \' úpsilon\' ) é independente de \' úpsilon\' , isto é, A(t, \' úpsilon\') = A(t), mostramos um resultado de exitência, unicidade, continuidade relativamente a dados iniciais e continuação para o caso em que a não linearidade f tem crescimento crítico. Se A(t, \'úpsilon\' ) depende do tempo e do estado, então mostramos um resultado de existência, unicidade com f tendo crescimento sub-crítico semelhante aos resultados encontrados em [7, 33] / In this work we study initial value problems of the form \' d \'úpsilon\' SUP. dt + A (t, \'úpsilon\')\'úpsilon\' = f (t, \'úpsilon\' ) \' úpsilon\' (0) = \' úpsilon IND.0\', in a Banach space X where A(t,\' úpsilon\' ) : D \' this contained \' X \' ARROW\' X is an unbounded closed linear operator which is sectorial for each (t,\' úpsilon\' ). When the operator family A(t, \' úpsilon\' ) is independent of \' úpsilon\' , that is, A(t, \' úpsilon\' ) = A(t), we show a result on local well posedness and continuation with the nonlinearity f growing critically. If A(t,\' úpsilon\' ) depends on the time t and on the state \' úpsilon\' we show a local well posedness and continuation result that is similar to the result found in [7, 33]
4

Problemas parabólicos selineares singularmente não autônomos com expoentes críticos / Semilinear parabolic problems singularity non autonomous with critical exponents

Marcelo Jose Dias Nascimento 15 February 2007 (has links)
Neste trabalho estudamos problemas de evolução da forma \'d \' úpsilond\' SUP. \' úpsilon\' t\'\' + A (t,\'úpsilon\' )\' úpsilon\' = f(t,\'úpsilon\' ) \'úpsilon\'(0) = \' \' úpsilon\' IND. 0\' \', em um espaço de Banach X onde A(t, \'úpsilon\' ) : D \'está contido em\' X \'SETA \' X é um operador linear fechado e setorial para cada (t, \' úpsilon\' ). Quando o operador A(t, \' úpsilon\' ) é independente de \' úpsilon\' , isto é, A(t, \' úpsilon\') = A(t), mostramos um resultado de exitência, unicidade, continuidade relativamente a dados iniciais e continuação para o caso em que a não linearidade f tem crescimento crítico. Se A(t, \'úpsilon\' ) depende do tempo e do estado, então mostramos um resultado de existência, unicidade com f tendo crescimento sub-crítico semelhante aos resultados encontrados em [7, 33] / In this work we study initial value problems of the form \' d \'úpsilon\' SUP. dt + A (t, \'úpsilon\')\'úpsilon\' = f (t, \'úpsilon\' ) \' úpsilon\' (0) = \' úpsilon IND.0\', in a Banach space X where A(t,\' úpsilon\' ) : D \' this contained \' X \' ARROW\' X is an unbounded closed linear operator which is sectorial for each (t,\' úpsilon\' ). When the operator family A(t, \' úpsilon\' ) is independent of \' úpsilon\' , that is, A(t, \' úpsilon\' ) = A(t), we show a result on local well posedness and continuation with the nonlinearity f growing critically. If A(t,\' úpsilon\' ) depends on the time t and on the state \' úpsilon\' we show a local well posedness and continuation result that is similar to the result found in [7, 33]
5

Estimations a posteriori pour l'équation de convection-diffusion-réaction instationnaire et applications aux volumes finis / A posteriori error estimates for the time-dependent convection-diffusion-reaction equation and application to the finite volume methods

Chalhoub, Nancy 17 December 2012 (has links)
On considère l'équation de convection--diffusion--réaction instationnaire. On s'intéresse à la dérivation d'estimations d'erreur a posteriori pour la discrétisation de cette équation par la méthode des volumes finis centrés par mailles en espace et un schéma d'Euler implicite en temps. Les estimations, qui sont établies dans la norme d'énergie, bornent l'erreur entre la solution exacte et une solution post-traitée à l'aide de reconstructions $Hdiv$-conformes du flux diffusif et du flux convectif, et d'une reconstruction $H^1_0(Omega)$-conforme du potentiel. On propose un algorithme adaptatif qui permet d'atteindre une précision relative fixée par l'utilisateur en raffinant les maillages adaptativement et en équilibrant les contributions en espace et en temps de l'erreur. On présente également des essais numériques. Enfin, on dérive une estimation d'erreur a posteriori dans la norme d'énergie augmentée d'une norme duale de la dérivée en temps et de la partie antisymétrique de l'opérateur différentiel. Cette nouvelle estimation est robuste dans des régimes dominés par la convection et des bornes inférieures locales en temps et globales en espace sont également obtenues / We consider the time-dependent convection--diffusion--reaction equation. We derive a posteriori error estimates for the discretization of this equation by the cell-centered finite volume scheme in space and a backward Euler scheme in time. The estimates are established in the energy norm and they bound the error between the exact solution and a locally post processed approximate solution, based on $Hdiv$-conforming diffusive and convective flux reconstructions, as well as an $H^1_0(Omega)$-conforming potential reconstruction. We propose an adaptive algorithm which ensures the control of the total error with respect to a user-defined relative precision by refining the meshes adaptively while equilibrating the time and space contributions to the error. We also present numerical experiments. Finally, we derive another a posteriori error estimate in the energy norm augmented by a dual norm of the time derivative and the skew symmetric part of the differential operator. The new estimate is robust in convective-dominated regimes and local-in-time and global-in-space lower bounds are also derived
6

Option prices in stochastic volatility models / Prix d’options dans les modèles à volatilité stochastique

Terenzi, Giulia 17 December 2018 (has links)
L’objet de cette thèse est l’étude de problèmes d’évaluation d’options dans les modèles à volatilité stochastique. La première partie est centrée sur les options américaines dans le modèle de Heston. Nous donnons d’abord une caractérisation analytique de la fonction de valeur d’une option américaine comme l’unique solution du problème d’obstacle parabolique dégénéré associé. Notre approche est basée sur des inéquations variationelles dans des espaces de Sobolev avec poids étendant les résultats récents de Daskalopoulos et Feehan (2011, 2016) et Feehan et Pop (2015). On étudie aussi les propriétés de la fonction de valeur d’une option américaine. En particulier, nous prouvons que, sous des hypothèses convenables sur le payoff, la fonction de valeur est décroissante par rapport à la volatilité. Ensuite nous nous concentrons sur le put américaine et nous étendons quelques résultats qui sont bien connus dans le monde Black-Scholes. En particulier nous prouvons la convexité stricte de la fonction de valeur dans la région de continuation, quelques propriétés de la frontière libre, la formule de Prime d’Exercice Anticipée et une forme faible de la propriété du smooth fit. Les techniques utilisées sont de type probabiliste. Dans la deuxième partie nous abordons le problème du calcul numérique du prix des options européennes et américaines dans des modèles à volatilité stochastiques et avec sauts. Nous étudions d’abord le modèle de Bates-Hull-White, c’est-à-dire le modèle de Bates avec un taux d’intérêt stochastique. On considère un algorithme hybride rétrograde qui utilise une approximation par chaîne de Markov (notamment un arbre “avec sauts multiples”) dans la direction de la volatilité et du taux d’intérêt et une approche (déterministe) par différence finie pour traiter le processus de prix d’actif. De plus, nous fournissons une procédure de simulation pour des évaluations Monte Carlo. Les résultats numériques montrent la fiabilité et l’efficacité de ces méthodes. Finalement, nous analysons le taux de convergence de l’algorithme hybride appliqué à des modèles généraux de diffusion avec sauts. Nous étudions d’abord la convergence faible au premier ordre de chaînes de Markov vers la diffusion sous des hypothèses assez générales. Ensuite nous prouvons la convergence de l’algorithme: nous étudions la stabilité et la consistance de la méthode hybride par une technique qui exploite les caractéristiques probabilistes de l’approximation par chaîne de Markov / We study option pricing problems in stochastic volatility models. In the first part of this thesis we focus on American options in the Heston model. We first give an analytical characterization of the value function of an American option as the unique solution of the associated (degenerate) parabolic obstacle problem. Our approach is based on variational inequalities in suitable weighted Sobolev spaces and extends recent results of Daskalopoulos and Feehan (2011, 2016) and Feehan and Pop (2015). We also investigate the properties of the American value function. In particular, we prove that, under suitable assumptions on the payoff, the value function is nondecreasing with respect to the volatility variable. Then, we focus on an American put option and we extend some results which are well known in the Black and Scholes world. In particular, we prove the strict convexity of the value function in the continuation region, some properties of the free boundary function, the Early Exercise Price formula and a weak form of the smooth fit principle. This is done mostly by using probabilistic techniques.In the second part we deal with the numerical computation of European and American option prices in jump-diffusion stochastic volatility models. We first focus on the Bates-Hull-White model, i.e. the Bates model with a stochastic interest rate. We consider a backward hybrid algorithm which uses a Markov chain approximation (in particular, a “multiple jumps” tree) in the direction of the volatility and the interest rate and a (deterministic) finite-difference approach in order to handle the underlying asset price process. Moreover, we provide a simulation scheme to be used for Monte Carlo evaluations. Numerical results show the reliability and the efficiency of the proposed methods.Finally, we analyze the rate of convergence of the hybrid algorithm applied to general jump-diffusion models. We study first order weak convergence of Markov chains to diffusions under quite general assumptions. Then, we prove the convergence of the algorithm, by studying the stability and the consistency of the hybrid scheme, in a sense that allows us to exploit the probabilistic features of the Markov chain approximation
7

Problèmes non-linéaires singuliers et bifurcation / Singular nonlinear problems and bifurcation

Bougherara, Brahim 11 September 2014 (has links)
Cette thèse s’inscrit dans le domaine mathématique de l’analyse des équations aux dérivées partielles non linéaires. Précisément, nous nous sommes intéressés à une classe de problèmes elliptiques et paraboliques avec coefficients singuliers. Ce manque de régularité pose un certain nombre de difficultés qui ne permettent pas d’utiliser directement les méthodes classiques de l’analyse non-linéaire fondées entre autres sur des résultats de compacité. Dans les démonstrations des principaux résultats, nous montrons comment pallier ces difficultés. Ceci suppose d’adapter certaines techniques bien connues mais aussi d’introduire de nouvelles méthodes. Dans ce contexte, une étape importante est l’estimation fine du comportement des solutions qui permet d’adapter le principe de comparaison faible, d’utiliser la régularité elliptique et parabolique et d’appliquer dans un nouveau contexte la théorie globale de la bifurcation analytique. La thèse se présente sous forme de deux parties indépendantes. 1- Dans la première partie (chapitre I de la thèse), nous avons étudié un problème quasi-linéaire parabolique fortement singulier faisant intervenir l’opérateur p-Laplacien. On a démontré l’existence locale et la régularité de solutions faibles. Ce résultat repose sur des estimations a priori obtenues via l’utilisation d’inégalités de type log-Sobolev combinées à des inégalités de Gagliardo-Nirenberg. On démontre l’unicité de la solution pour un intervalle de valeurs du paramètre de la singularité en utilisant un principe de comparaison faible fondé sur la monotonie d’un opérateur non linéaire adéquat. 2- Dans la deuxième partie (correspondant aux Chapitres II, III et IV de la thèse), nous sommes intéressés à l’étude de problèmes de bifurcation globale. On a établi pour ces problèmes l’existence de continuas non bornés de solutions qui admettent localement une paramétrisation analytique. Pour établir ces résultats, nous faisons appel à différents outils d’analyse non linéaire. Un outil important est la théorie analytique de la bifurcation globale qui a été introduite par Dancer (voir Chapitre II de la thèse). Pour un problème semi linéaire elliptique avec croissance critique en dimension 2, on montre que les solutions le long de la branche convergent vers une solution singulière (solution non bornée) lorsque la norme des solutions converge vers l’infini. Par ailleurs nous montrons que la branche admet une infinité dénombrable de "points de retournement" correspondant à un changement de l’indice de Morse des solutions qui tend vers l’infini le long de la branche. / This thesis is concerned with the mathematical study of nonlinear partial differential equations. Precisely, we have investigated a class of nonlinear elliptic and parabolic problems with singular coefficients. This lack of regularity involves some difficulties which prevent the straight-orward application of classical methods of nonlinear analysis based on compactness results. In the proofs of the main results, we show how to overcome these difficulties. Precisely we adapt some well-known techniques together with the use of new methods. In this framework, an important step is to estimate accurately the solutions in order to apply the weak comparison principle, to use the regularity theory of parabolic and elliptic equations and to develop in a new context the analytic theory of global bifurcation. The thesis presents two independent parts. 1- In the first part (corresponding to Chapter I), we are interested by a nonlinear and singular parabolic equation involving the p-Laplacian operator. We established for this problem that for any non-negative initial datum chosen in a certain Lebeque space, there exists a local positive weak solution. For that we use some a priori bounds based on logarithmic Sobolev inequalities to get ultracontractivity of the associated semi-group. Additionaly, for a range of values of the singular coefficient, we prove the uniqueness of the solution and further regularity results. 2- In the second part (corresponding to Chapters II, III and IV of the thesis), we are concerned with the study of global bifurcation problems involving singular nonlinearities. We establish the existence of a piecewise analytic global path of solutions to these problems. For that we use crucially the analytic bifurcation theory introduced by Dancer (described in Chapter II of the thesis). In the frame of a class of semilinear elliptic problems involving a critical nonlinearity in two dimensions, we further prove that the piecewise analytic path of solutions admits asymptotically a singular solution (i.e. an unbounded solution), whose Morse index is infinite. As a consequence, this path admits a countable infinitely many “turning points” where the Morse index is increasing.
8

Higher Order Numerical Methods for Singular Perturbation Problems.

Munyakazi, Justin Bazimaziki. January 2009 (has links)
<p>In recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We &macr / nd that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis</p>
9

Higher Order Numerical Methods for Singular Perturbation Problems.

Munyakazi, Justin Bazimaziki. January 2009 (has links)
<p>In recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We &macr / nd that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis</p>
10

Higher order numerical methods for singular perturbation problems

Munyakazi, Justin Bazimaziki January 2009 (has links)
Philosophiae Doctor - PhD / In recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We find that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis. / South Africa

Page generated in 0.0828 seconds