• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Higher Order Numerical Methods for Singular Perturbation Problems.

Munyakazi, Justin Bazimaziki. January 2009 (has links)
<p>In recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We &macr / nd that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis</p>
2

Higher Order Numerical Methods for Singular Perturbation Problems.

Munyakazi, Justin Bazimaziki. January 2009 (has links)
<p>In recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We &macr / nd that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis</p>
3

Higher order numerical methods for singular perturbation problems

Munyakazi, Justin Bazimaziki January 2009 (has links)
Philosophiae Doctor - PhD / In recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We find that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis. / South Africa
4

High Accuracy Fitted Operator Methods for Solving Interior Layer Problems

Sayi, Mbani T January 2020 (has links)
Philosophiae Doctor - PhD / Fitted operator finite difference methods (FOFDMs) for singularly perturbed problems have been explored for the last three decades. The construction of these numerical schemes is based on introducing a fitting factor along with the diffusion coefficient or by using principles of the non-standard finite difference methods. The FOFDMs based on the latter idea, are easy to construct and they are extendible to solve partial differential equations (PDEs) and their systems. Noting this flexible feature of the FOFDMs, this thesis deals with extension of these methods to solve interior layer problems, something that was still outstanding. The idea is then extended to solve singularly perturbed time-dependent PDEs whose solutions possess interior layers. The second aspect of this work is to improve accuracy of these approximation methods via methods like Richardson extrapolation. Having met these three objectives, we then extended our approach to solve singularly perturbed two-point boundary value problems with variable diffusion coefficients and analogous time-dependent PDEs. Careful analyses followed by extensive numerical simulations supporting theoretical findings are presented where necessary.

Page generated in 0.077 seconds