Spelling suggestions: "subject:"burning point problems"" "subject:"durning point problems""
1 |
Higher Order Numerical Methods for Singular Perturbation Problems.Munyakazi, Justin Bazimaziki. January 2009 (has links)
<p>In recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We ¯ / nd that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis</p>
|
2 |
Higher Order Numerical Methods for Singular Perturbation Problems.Munyakazi, Justin Bazimaziki. January 2009 (has links)
<p>In recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We ¯ / nd that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis</p>
|
3 |
Higher order numerical methods for singular perturbation problemsMunyakazi, Justin Bazimaziki January 2009 (has links)
Philosophiae Doctor - PhD / In recent years, there has been a great interest towards the higher order numerical methods for singularly perturbed problems. As compared to their lower order counterparts, they provide better accuracy with fewer mesh points. Construction and/or implementation of direct higher order methods is usually very complicated. Thus a natural choice is to use some convergence acceleration techniques, e.g., Richardson extrapolation, defect correction, etc. In this thesis, we will consider various classes of problems described by singularly perturbed ordinary and partial differential equations. For these problems, we design some novel numerical methods and attempt to increase their accuracy as well as the order of convergence. We also do the same for existing numerical methods in some instances. We find that, even though the Richardson extrapolation technique always improves the accuracy, it does not perform equally well when applied to different methods for certain classes of problems. Moreover, while in some cases it improves the order of convergence, in other cases it does not. These issues are discussed in this thesis for linear and nonlinear singularly perturbed ODEs as well as PDEs. Extrapolation techniques are analyzed thoroughly in all the cases, whereas the limitations of the defect correction approach for certain problems is indicated at the end of the thesis. / South Africa
|
4 |
High Accuracy Fitted Operator Methods for Solving Interior Layer ProblemsSayi, Mbani T January 2020 (has links)
Philosophiae Doctor - PhD / Fitted operator finite difference methods (FOFDMs) for singularly perturbed
problems have been explored for the last three decades. The construction of
these numerical schemes is based on introducing a fitting factor along with the
diffusion coefficient or by using principles of the non-standard finite difference
methods. The FOFDMs based on the latter idea, are easy to construct and they
are extendible to solve partial differential equations (PDEs) and their systems.
Noting this flexible feature of the FOFDMs, this thesis deals with extension
of these methods to solve interior layer problems, something that was still outstanding.
The idea is then extended to solve singularly perturbed time-dependent
PDEs whose solutions possess interior layers. The second aspect of this work is
to improve accuracy of these approximation methods via methods like Richardson
extrapolation. Having met these three objectives, we then extended our
approach to solve singularly perturbed two-point boundary value problems with
variable diffusion coefficients and analogous time-dependent PDEs. Careful analyses
followed by extensive numerical simulations supporting theoretical findings
are presented where necessary.
|
Page generated in 0.112 seconds