Return to search

Método da média para equações diferenciais funcionais retardadas impulsivas via equações diferenciais generalizadas / Averaging method for retarded functional differential equations with impulses by generalized ordinary differential equations

Neste trabalho, nós consideramos o seguinte problema de valor inicial para uma equação diferencial funcional retardada com impulsos { \'x PONTO\' = \'varepsilon\' f (t, \'x IND.t\'), t \' DIFERENTE\' \'t IND. k\', \'DELTA\' x(\'t IND. k\') = \'varepsilon\' \' I IND. k\' (x ( \'t IND.k\')), k = 0, 1, 2, ... \'x IND. t IND.0\' = \' phi\', onde f está definida em um aberto \' OMEGA\' de R x \' G POT. -\' ([- r, 0], \' R POT. n\') e assume valores em \'R POT. n\', \' \'varepsilon\' \'G POT. - ([ - r, 0], \'R POT.n\'), r .0, onde \' G POT -\' ([ - r, 0], \' R POT. n\') denota o espaço das funções de [ - r, 0] em \' R POT. n\' que estão regradas e contínuas à esquerda. Além disso, \' t IND.0 < \' t IND. 1\'< ... \'t IND. k\' < ... são momentos pré determinados de impulsos tais que \'lim SOBRE k SETA + \' INFINITO\' \'t IND. k = + \' INFINITO\' e \'DELTA\'x (\' t IND.k\') = x ( \'t POT. + IND > k) - x (\'t IND. k). Os operadores de impulso \' I IND. k\', k = 0, 1, ... são funções contínuas de \'R POT. n\' em \' R POT. n\'. Consideramos, também, que para cada x \'varepsilon\' \' G POT. -\' ([- r, \' INFINITO\'), \'R POT. n\'), t \'SETA\' f (t, \'x IND. t\') é uma função localmente Lebesgue integrável e sua integral indefinida satisfaz uma condição do tipo Carathéodory. Além disso, f é Lipschitziana na segunda variável. Definimos \' f IND. 0\' ( \'phi\') = \' lim SOBRE T \' SETA\' \' INFINITO\' \'1 SUP. T \' INT. SUP. T INF. \' T IND.0\' f (t, \' PSI\') dt e \' I IND. 0(x) = \' lim SOBRE T \'SETA\' \' INFINITO\' \' 1 SUP. T\' \' SIGMA\' IND. 0 < ou = \' t IND. i\' < T onde \' psi\' \'varepsilon\' \' G POT. -\' ([ - r, 0], \' R POT. n\', e consideremos a seguinte equação diferencial funcioonal autônoma \" média\" y PONTO = \' varepsilon\' [ \' f IND. 0\' (\' y IND. t\' + \' I IND> 0\' (y (t))], \'y IND. t IND. 0 = \' phi\'. Então provamos que, sob certas condições, a solução x(t) de (1) se aproxima da solução y(t) de (2) em tempo assintoticamente grande / In this present work, we condider the following initial value problem for a retarded functional differential equation with impulses { \'x POINT\' = \'varepsilon\' f (t, \'x IND.t\'), t \' DIFFERENT\' \'t IND. k\', \'DELTA\' x(\'t IND. k\') = \'varepsilon\' \' I IND. k\' (x ( \'t IND.k\')), k = 0, 1, 2, ... \'x IND. t IND.0\' = \' phi\', where f está defined in a open set \' OMEGA\' de R x \' G POT. -\' ([- r, 0], \' R POT. n\'), r >0, and takes values in \'R POT. n\', \' \'varepsilon\' \'G POT. - ([ - r, 0], \'R POT.n\'), r .0, where \' G POT -\' ([ - r, 0], \' R POT. n\') denotes the space of regulated functions from [ - r, 0] to \' R POT. n\' which are left continuous. Furthermore, \' t IND.0 < \' t IND. 1\'< ... \'t IND. k\' < ... are pre-assigned moments of impulse effects such that \'lim ON k ARROW + \' THE INFINITE\' \'t IND. k = + \' THE INFINITE\' e \'DELTA\'x (\' t IND.k\') = x ( \'t POT. + IND>k) - x (\'t IND. k). The impulse operators \' I IND. k\', k = 0, 1, ... are continuous mappings from \'R POT. n\' to \' R POT. n\'. For each x \'varepsilon\' \' G POT. -\' ([- r, \' THE INFINITE\'), \'R POT. n\'), t \'ARROW\' f (t, \'x IND. t\') is locally Lebesgue integrable and its indefinite integral satisfies a Carathéodory. Moreover, f é Lipschitzian with respect to the second variable. We define \' f IND. 0\' ( \'phi\') = \' lim ON T \' ARROW\' \' THE INFINITE\' \'1 SUP. T \' INT. SUP. T INF. \' T IND.0\' f (t, \' PSI\') dt and \' I IND. 0(x) = \' lim ON T \'ARROW\' \' THE INFINITE\' \' 1 SUP. T\' \' SIGMA\' IND. 0 < or = \' t IND. i\' < T where \' psi\' \'varepsilon\' \' G POT. -\' ([ - r, 0], \' R POT. n\', and consider the \"averaged\" autonomous functional differential equation \'y PONTO = \' varepsilon\' [ \' f IND. 0\' (\' y IND. t\' + \' I IND> 0\' (y (t))], \'y IND. t IND. 0 = \' phi\'. Then we prove that, under certain conditions, the solution x(t) of (1) in aproximates the solution y(t) de (2) in an asymptotically large time interval

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-10052010-085321
Date24 August 2009
CreatorsJaqueline Bezerra Godoy
ContributorsMárcia Cristina Anderson Braz Federson, Luciano Barbanti, Suzinei Aparecida Siqueira Marconato
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds