Return to search

Superfícies de Weingarten Lineares Hiperbólicas em R3 / Hyperbolic linear Weingarten surfaces in R3

Made available in DSpace on 2014-07-29T16:02:21Z (GMT). No. of bitstreams: 1
dissertacao luciene.pdf: 1020843 bytes, checksum: ac206e5a833b7c12a09d587ba480850c (MD5)
Previous issue date: 2009-08-25 / The present work has been based by the [1] from Juan A. Aledo S´anches and Jos´e M.
Espinar and [2] from Rafael L´opez articles. In those articles they studied hiperbolic linear
Weingarten surfaces in R3 space, this is, surface whose mean curvature H and Gaussian
curvature K satisfy a relation of the form aH+bK =c, where a, b, c 2 R. A such surface is
said to be hiperbolic when the discriminant D := a2+4bc < 0.We obtain a representation
for rotational hyperbolic linear Weingarten surfaces in terms of its Gauss map and we
also present, in the case a 6= 0, a classification of linearWeingarten surfaces of hyperbolic
rotation. As a consequence we obtain, in the case a 6=0, a family of complete hyperbolic
linear Weingarten surfaces in R3. This contrasts with Hilbert s theorem that there do not
exist complete surfaces with constant negative Gaussian curvature immersed in R3. / Este trabalho foi baseado nos artigos [1] de Juan A. Aledo S´anches e Jos´e M. Espinar
e [2] de Rafael L´opez. Nestes artigos eles estudaram superf´&#305;cies de Weingarten
lineares hiperb´olicas , ou seja, superf´&#305;cies cuja curvatura m´edia H e a
curvatura Gaussiana K satisfazem uma relac¸ ao linear da forma aH + bK = c,
onde a, b, c 2 R. Tais superf´&#305;cies s ao ditas hiperb´olicas quando o discriminante
D := a2 + 4bc < 0. Obteremos uma representac¸ ao para as superf´&#305;cies de Weingarten
lineares hiperb´olicas em termos das suas aplicac¸ oes de Gauss e tamb´em
apresentaremos, no caso a 6= 0, uma classificac¸ ao de superf´&#305;cies de Weingarten
lineares de rotac¸ ao hiperb´olicas. Como consequ encia obteremos, no caso a 6= 0, uma
fam´&#305;lia de superf´&#305;cies de Weingarten lineares hiperb´olicas de rotac¸ ao completas em R3.
Isto contrasta com o Teorema de Hilbert que diz que n ao existe superf´&#305;cie completa com
curvatura Gaussiana constante negativa imersa em R3

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tde/1963
Date25 August 2009
CreatorsGUEDES, Luciene Viana
ContributorsFERREIRA, Walterson Pereira
PublisherUniversidade Federal de Goiás, Mestrado em Matemática, UFG, BR, Ciências Exatas e da Terra
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0014 seconds