Return to search

Chemical and physical behaviour of the trace elements in the silicate melts of the Earth's mantle / Comportement chimique et physique des éléments traces dans les silicates fondus du manteau terrestre

Nous avons étudié des magmas ferrifères silicatés magnésiens à la pression du manteau terrestre en utilisant la dynamique moléculaire (First Principles Molecular Dynamics). Les résultats de l’équation d’état que nous avons obtenus à partir de nos simulations ont été utilisés pour créer un modèle chimique et minéralogique pour les zones de très basse vitesse sismique (ULVZ, anomalies régionales dans le manteau proche de la limite noyau-manteau). De plus, nous avons étudié le comportement du Ni, du Co et du Fe dans ces magmas et établi la dépendance du spin en fonction de la concentration, de la pression, de la température et du degré de polymérisation du magma silicaté. Nous avons montré qu’une baisse du spin moyen peut être corrélée au changement de pente (kink) observé précédemment pour les coefficients de partage du Ni et du Co. Nous avons analysé la structure du magma pour toutes les compositions étudiées en fonction de la pression. Nos résultats donnent un nouvel aperçu de la coordination des éléments majeurs et traces dans les magmas silicatés de différents degrés de polymérisation. Nous interprétons l’anomalie de coordination Ni-O en fonction de la pression comme un changement d’état de spin. L’effet de la polymérisation du magma silicaté sur les coefficients de partage du Co, du Ni et du W entre le métal et le magma silicaté a été étudié par expériences multi-enclumes en conditions isobares et isothermes. Nous avons réalisé des simulations FPMD de magmas à des degrés de polymérisation similaires aux expériences afin d’expliquer le caractère de plus en plus lithophile du W lorsque le degré de polymérisation du magma silicaté diminue. Nous proposons une explication structurale pour expliquer l’affinité décroissante apparente du W dans les magmas silicatés dépolymérisés. / We explore Fe-bearing Mg-silicate melts through the pressure regime of the Earth’s mantle using First Principles Molecular Dynamics (FPMD). The equation of state results we obtained from our simulations are used to create a chemical and mineralogical model for Ultra-Low Velocity Zones (anomalous region on the mantle side of the core-mantle boundary). Furthermore we study the behaviour of Ni, Co, and Fe in these melts, and asses their spin-crossover dependencies on their concentration, pressure, temperature, and the degree of polymerization of the silicate melts. We show that a decrease in the average spin can be correlated with the previously observed kink in the partitioning coefficient of Ni and Co. We investigate the melt structure of all the compositions studied as a function of pressure. Our results provide new insight into the coordination of major and trace elements in silicate melts with different degrees of polymerization. We interpret the anomalous Ni-O coordination trend with pressure as the result of the spin state change. The effect of silicate melt polymerization on the partitioning of Co, Ni, and W between a metal and silicate melt, is investigated at isobaric and isothermic conditions using multi-anvil experiments. We have performed FPMD simulations of melts with similar degrees of polymerization as the experiments in order to explain the increasing lithophile character of W with the decrease in polymerization of the silicate melt. We propose a structural explanation for tungsten’s apparent increased affinity for depolymerized silicate melts.

Identiferoai:union.ndltd.org:theses.fr/2016LYSEN004
Date01 April 2016
CreatorsSeclaman, Alexandra Catalina
ContributorsLyon, Caracas, Razvan
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0031 seconds