Return to search

Low-Noise High-Precision Readout Circuits for Capacitive MEMS Accelerometer

Over the past two decades, Micro-Electro-Mechanical System (MEMS) based accelerometers, benefiting from relatively simple structure, low-power consumption, high sensitivity, and easy integration, have been widely used in many industrial and consumer electronics applications. For the high precision accelerometers, a significant technical challenge is to design a low-noise readout circuit to guarantee the required high resolution of the entire integrated system.
There are three main approaches for improvement of the noise and offset of the readout circuit, namely auto-zero (AZ) and correlated double sampling (CDS) for the switched- capacitor (SC) circuit and chopper stabilization (CHS) for the continuous-time circuit.
This thesis investigates the merits and drawbacks of all three techniques for reading the capacitance of a low noise MEMS accelerometer developed in our group. After that, we compare the different effects of the three technologies on noise, offset, output range, linearity, dynamic range, and gain. Next, we present the design of the most suitable structure for our sensor to achieve low noise, low offset, and high precision within the working frequency. In this thesis, the design and post-layout simulation of the circuit is proposed, and the fabrication is currently in progress. The readout circuit has reached the noise floor of the sub-μg, which meets the strict requirements of low noise MEMS

capacitance-to-voltage converter. A high-performance accelerometer system is regarded
as the core of a low-noise, high-resolution geophone. We show that together with the MEMS accelerometer sensor, the readout circuit provides competitive overall system noise and guarantees the required resolution.

Identiferoai:union.ndltd.org:kaust.edu.sa/oai:repository.kaust.edu.sa:10754/669009
Date04 1900
CreatorsYang, Kuilian
ContributorsFariborzi, Hossein, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Alouini, Mohamed-Slim, Eltawil, Ahmed, Sarathy, Mani
Source SetsKing Abdullah University of Science and Technology
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Rights2022-04-28, At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis will become available to the public after the expiration of the embargo on 2022-04-28.

Page generated in 0.0021 seconds