Return to search

λ-calcul différentiel et logique classique : interactions calculatoires

Cette thèse de théorie de la démonstration étudie les interactions entre le λ-calcul différentiel d'Ehrhard et Regnier d'un côté, et certaines émanations calculatoires de la logique classique (le λμ-calcul de Parigot et le λ-barre-μ-calcul de Herbelin) de l'autre. L'étude est initiée et guidée par la décomposition de ces calculs dans des extensions de la logique linéaire de Girard.<br /><br />Dans une première partie, on définit un cadre commun pour ces extensions, dans le formalisme des réseaux d'interaction de Lafont, et on y rappelle des résultats de la littérature ou du folklore. On donne en particulier la traduction du λμ-calcul et du λ-barre-μ-calcul dans les réseaux polarisés de Laurent et celle du fragment finitaire du λ-calcul différentiel dans les réseaux différentiels d'Ehrhard et Regnier.<br /><br />Dans la deuxième partie, on introduit les réseaux différentiels polarisés (RDP), comme l'extension par une polarisation à la Laurent des réseaux différentiels. La pertinence des règles de réduction nouvelles est soulignée par l'étude d'un modèle dénotationnel commun aux réseaux différentiels et aux réseaux polarisés.<br /><br />Enfin, on présente trois calculs de termes, chacun pouvant être considéré comme une lecture en arrière de tout ou partie des interactions définies par les RDP : un λμ-calcul différentiel, qui correspond à la réunion des réseaux différentiels et des réseaux polarisés ; un λ-barre-μ-calcul avec produit de convolution sur les piles, qui fait intervenir la structure de bigèbre des types polarisés introduite dans les RDP, mais pas la dérivée ; enfin, un λ-barre-μ-calcul différentiel qui développe toute l'expressivité des RDP.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00194149
Date23 November 2007
CreatorsVaux, Lionel
PublisherUniversité de la Méditerranée - Aix-Marseille II
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0012 seconds