Return to search

Inferência estatística em métodos de análise de ressonância magnética funcional / Statistical Inference in Methods of Analysis of Functional Magnetic Resonance

No presente trabalho, conceitos de inferência estatística são utilizados para aplicação e comparação de diferentes métodos de análise de sinais de ressonância magnética funcional. A idéia central baseia-se na obtenção da distribuição de probabilidade da variável aleatória de interesse, para cada método estudado e sob diferentes valores da relação sinal-ruído (SNR). Este objetivo é atingido através de simulações numéricas da função resposta hemodinâmica (HRF) acrescida de ruído gaussiano. Tal procedimento nos permite avaliar a sensibilidade e a especificidade dos métodos empregados através da construção das curvas ROC (receiver operating characteristic) para diferentes valores de SNR. Sob específicas condições experimentais, aplicamos métodos clássicos de análise (teste t de Student e correlação), medidas de informação (distância de Kullback-Leibler e sua forma generalizada) e um método Bayesiano (método do pixel independente). Em especial, mostramos que a distância de Kullback-Leibler (D) (ou entropia relativa) e sua forma generalizada são medidas úteis para análise de sinais dentro do cenário de teoria da informação. Estas entropias são usadas como medidas da \"distância\"entre as funções de probabilidade p1 e p2 dos níveis do sinal relacionados a estímulo e repouso. Para prevenir a ocorrência de valores divergentes de D, introduzimos um pequeno parâmetro d nas definições de p1 e p2. Estendemos a análise, apresentando um estudo original da distância de Kullback-Leibler generalizada Dq (q é o parâmetro de Tsallis). Neste caso, a escolha apropriada do intervalo 0 < q < 1 permite assegurar que Dq seja finito. Obtemos as densidades de probabilidade f (D) e f (Dq) das médias amostrais das variáveis D e Dq , respectivamente, calculadas ao longo das N épocas de todo o experimento. Para pequenos valores de N (N < 30), mostramos que f (D) e f (Dq) são muito bem aproximadas por distribuições Gamma (qui^2 < 0,0009). Em seguida, estudamos o método (Bayesiano) do pixel independente, considerando a probabilidade a posteriori como variável aleatória e obtendo sua distribuição para várias SNR\'s e probabilidades a priori. Os resultados das simulações apontam para o fato de que a correlação e o método do pixel independente apresentam melhor desempenho do que os demais métodos empregados (para SNR > -20 dB). Contudo, deve-se ponderar que o teste t e os métodos entrópicos compartilham da vantagem de não se utilizarem de um modelo para HRF na análise de dados reais. Finalmente, para os diferentes métodos, obtemos os mapas funcionais correspondentes a séries de dados reais de um voluntário assintomático submetido a estímulo motor de evento relacionado, os quais demonstram ativação nas áreas cerebrais motoras primária e secundária. Enfatizamos que o procedimento adotado no presente estudo pode, em princípio, ser utilizado em outros métodos e sob diferentes condições experimentais. / In the present work, concepts of statistical inference are used for application and comparison of different methods of signal analysis in functional magnetic resonance imaging. The central idea is based on obtaining the probability distribution of the random variable of interest, for each method studied under different values of signal-to-noise ratio (SNR). This purpose is achieved by means of numerical simulations of the hemodynamic response function (HRF) with gaussian noise. This procedure allows us to assess the sensitivity and specificity of the methods employed by the construction of the ROC curves (receiver operating characteristic) for different values of SNR. Under specific experimental conditions, we apply classical methods of analysis (Student\'s t test and correlation), information measures (distance of Kullback-Leibler and its generalized form) and a Bayesian method (independent pixel method). In particular, we show that the distance of Kullback-Leibler D (or relative entropy) and its generalized form are useful measures for analysis of signals within the information theory scenario. These entropies are used as measures of the \"distance\"between the probability functions p1 and p2 of the signal levels related to stimulus and non-stimulus. In order to avoid undesirable divergences of D, we introduced a small parameter d in the definitions of p1 and p2. We extend such analysis, by presenting an original study of the generalized Kullback-Leibler distance Dq (q is Tsallis parameter). In this case, the appropriate choice of range 0 < q < 1 ensures that Dq is finite. We obtain the probability densities f (D) and f (Dq) of the sample averages of the variables D and Dq, respectively, calculated over the N epochs of the entire experiment. For small values of N (N < 30), we show that f (D) and f (Dq) are well approximated by Gamma distributions (qui^2 < 0.0009). Afterward, we studied the independent pixel bayesian method, considering the probability a posteriori as a random variable, and obtaining its distribution for various SNR\'s and probabilities a priori. The results of simulations point to the fact that the correlation and the independent pixel method have better performance than the other methods used (for SNR> -20 dB). However, one should consider that the Student\'s t test and the entropic methods share the advantage of not using a model for HRF in real data analysis. Finally, we obtain the maps corresponding to real data series from an asymptomatic volunteer submitted to an event-related motor stimulus, which shows brain activation in the primary and secondary motor brain areas. We emphasize that the procedure adopted in this study may, in principle, be used in other methods and under different experimental conditions.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-10062008-072315
Date11 April 2008
CreatorsCabella, Brenno Caetano Troca
ContributorsNeves, Ubiraci Pereira da Costa
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0027 seconds