Return to search

Malgrange-Ehrenpreis sats och explicita formler för fundamentallösningar / Malgrange–Ehrenpreis theorem and explicit formulas for fundamental solutions

This report presents and discusses proofs of the Malgrange-Ehrenpreis theorem, which states that every non-zero linear partial differential operator with constant coefficients has a fundamental solution. The main topic is explicit formulae, and more specifically, how they can be used to prove the theorem. Two different formulas will be considered in detail and the aim is to provide a fundamental and elementary description of how to prove the Malgrange-Ehrenpreis theorem using those formulas. In addition to the proofs, an example of how to use one of the formulas for the Cauchy-Riemann operator is shown. Finally, the report also contains a chapter discussing a few different notable methods of proof and their historical signifance.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-176376
Date January 2021
CreatorsOlsson, Anton
PublisherLinköpings universitet, Analys och didaktik, Linköpings universitet, Tekniska fakulteten
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0048 seconds