Return to search

Pronostic des systèmes complexes par l’utilisation conjointe de modèle de Markov caché et d’observateur / Prognosis of complex systems based on the joint use of an observer and a hidden Markov model

Cette thèse porte sur le diagnostic et le pronostic pour l’aide à la maintenance de systèmes complexes. Elle présente deux approches de diagnostic/pronostic qui permettent de générer les indicateurs utiles pour l’optimisation de la stratégie de maintenance. Plus précisément, ces approches permettent d’évaluer l’état de santé et de prédire la durée de vie résiduelle du système. Les approches présentées visent en particulier à pallier le problème d’absence d’indicateurs de dégradation. Les développements sont fondés sur l’utilisation d’observateurs, de formalisme de Modèle de Markov Caché, des méthodes d’inférences statistiques et des méthodes de prédiction de séries temporelles à base d’apprentissage afin de caractériser et prédire les modes de fonctionnement du système. Les deux approches sont illustrées sur des exemples de dégradation d’un système de régulation de niveau d’eau, d’une machine asynchrone et d’une batterie Li-Ion. / The research presented in this thesis deals of diagnosis and prognosis of complex systems. It presents two approaches that generate useful indicators for optimizing maintenance strategies. Specifically, these approaches are used to assess the level of degradation and estimate the Remaining Useful Life of the system. The aim of these approaches is to overcome for the lack of degradation indicators. The developments are based on observers, Hidden Markov Model formalism, statistical inference methods and learning-based methods in order to characterize and predict the system operating modes. To illustrate the proposed failure diagnosis/prognosis approaches, a simulated tank level control system, an induction motor and a Li-Ion battery were used.

Identiferoai:union.ndltd.org:theses.fr/2016ORLE2051
Date12 December 2016
CreatorsAggab, Toufik
ContributorsOrléans, Kratz, Frédéric
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds