Return to search

Controle ótimo de sistemas com saltos Markovianos e ruído multiplicativo com custos linear e quadrático indefinido. / Indefinite quadratic with linear costs optimal control of Markov jump with multiplicative noise systems.

Esta tese trata do problema de controle ótimo estocástico de sistemas com saltos Markovianos e ruído multiplicativo a tempo discreto, com horizontes de tempo finito e infinito. A função custo é composta de termos quadráticos e lineares nas variáveis de estado e de controle, com matrizes peso indefinidas. Como resultado principal do problema com horizonte finito, é apresentada uma condição necessária e suficiente para que o problema de controle seja bem posto, a partir da qual uma solução ótima é derivada. A condição e a lei de controle são escritas em termos de um conjunto acoplado de equações de Riccati interconectadas a um conjunto acoplado de equações lineares recursivas. Para o caso de horizonte infinito, são apresentadas as soluções ótimas para os problemas de custo médio a longo prazo e com desconto, derivadas a partir de uma solução estabilizante de um conjunto de equações algébricas de Riccati acopladas generalizadas (GCARE). A existência da solução estabilizante é uma condição suficiente para que tais problemas sejam do tipo bem posto. Além disso, são apresentadas condições para a existência das soluções maximal e estabilizante do sistema GCARE. Como aplicações dos resultados obtidos, são apresentadas as soluções de um problema de otimização de carteiras de investimento com benchmark e de um problema de gestão de ativos e passivos de fundos de pensão do tipo benefício definido, ambos os casos com mudanças de regime nas variáreis de mercado. / This thesis considers the finite-horizon and infinite-horizon stochastic optimal control problem for discrete-time Markov jump with multiplicative noise linear systems. The performance criterion is assumed to be formed by a linear combination of a quadratic part and a linear part in the state and control variables. The weighting matrices of the state and control for the quadratic part are allowed to be indefinite. For the finite-horizon problem the main results consist of deriving a necessary and sufficient condition under which the problem is well posed and a optimal control law is derived. This condition and the optimal control law are written in terms of a set of coupled generalized Riccati difference equations interconnected with a set of coupled linear recursive equations. For the infinite-horizon problem a set of generalized coupled algebraic Riccati equations (GCARE) is studied. In this case, a sufficient condition under which there exists the maximal solution and a necessary and sufficient condition under which there exists the mean square stabilizing solution for the GCARE are presented. Moreover, a solution for the discounted and long run average cost problems is presented. The results obtained are applied to solver a portfolio optimization problem with benchmark and a pension fund problem with regime switching.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-14012008-102952
Date01 November 2007
CreatorsWanderlei Lima de Paulo
ContributorsOswaldo Luiz do Valle Costa, José Jaime da Cruz, Gerson Francisco, Ricardo Paulino Marques, Marco Henrique Terra
PublisherUniversidade de São Paulo, Engenharia Elétrica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds