Neste trabalho analisaremos a utilização dos modelos de mudança de regime markoviano para a variância condicional. Estes modelos podem estimar de maneira fácil e inteligente a variância condicional não observada em função da variância anterior e do regime. Isso porque, é razoável ter coeficientes variando no tempo dependendo do regime correspondentes à persistência da variância (variância anterior) e às inovações. A noção de que uma série econômica possa ter alguma variação na sua estrutura é antiga para os economistas. Marcucci (2005) comparou diferentes modelos com e sem mudança de regime em termos de sua capacidade para descrever e predizer a volatilidade do mercado de valores dos EUA. O trabalho de Hamilton (1989) foi uns dos mais importantes para o desenvolvimento de modelos com mudança de regime. Inicialmente mostrou que a série do PIB dos EUA pode ser modelada como um processo que tem duas formas diferentes, uma na qual a economia encontra-se em crescimento e a outra durante a recessão. O câmbio de uma fase para outra da economia pode seguir uma cadeia de Markov de primeira ordem. Utilizamos as séries de índice Bovespa e S&P500 entre janeiro de 2003 e abril de 2012 e ajustamos o modelo GARCH(1,1) com mudança de regime seguindo uma cadeia de Markov de primeira ordem, considerando dois regimes. Foram consideradas as distribuições gaussiana, t de Student e generalizada do erro (GED) para modelar as inovações. A distribuição t de Student com mesmo grau de liberdade para ambos os regimes e graus distintos se mostrou superior à distribuição normal para caracterizar a distribuição dos retornos em relação ao modelo GARCH com mudança de regime. Além disso, verificou-se um ganho no percentual de cobertura dos intervalos de confiança para a distribuição normal, bem como para a distribuição t de Student com mesmo grau de liberdade para ambos os regimes e graus distintos, em relação ao modelo GARCH com mudança de regime quando comparado ao modelo GARCH usual. / In this work we analyze heterocedastic financial data using Markov regime switching models for conditional variance. These models can estimate easily the unobserved conditional variance as function of the previous variance and the regime. It is reasonable to have time-varying coefficients corresponding to the persistence of variance (previous variance) and innovations. The economic series notion may have some variation in their structure is usual for economists. Marcucci (2005) compared different models with and without regime switching in terms of their ability to describe and predict the volatility of the U.S. market. The Hamiltons (1989) work was the most important one in the regime switching models development. Initially showed that the series of U.S. GDP can be modeled as a process that has two different forms one in which the economy is growing and the other during the recession. The change from one phase to another economy can follow a Markov first order chain. We use the Bovespa series index and S&P500 between January 2003 and April 2012 and fitted the GARCH (1,1) models with regime switching following a Markov first order chain, considering two regimes. We considered Gaussian distribution, Student-t and generalized error (GED) to model innovations. The t-Student distribution with the same freedom degree for both regimes and distinct degrees showed higher than normal distribution for characterizing the distribution of returns relative to the GARCH model with regime switching. In addition, there was a gain in the percentage of coverage of the confidence intervals for the normal distribution, as well as the t-Student distribution with the same freedom degree for both regimes and distinct degrees related to GARCH model with regime switching when compared to the usual GARCH model.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-02072014-122143 |
Date | 24 March 2014 |
Creators | Rojas Duran, William Gonzalo |
Contributors | Alencar, Airlane Pereira |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0025 seconds