Markov processes have a long history of being used to model safety critical systems. However, with the development of autonomous vehicles and their increased complexity, Markov processes have been shown to not be sufficiently precise for reliability calculations. Therefore there has been the need to consider a more general stochastic process, namely the Semi-Markov process (SMP). SMPs allow for transitions with general distributions between different states and can be used to precisely model complex systems. This comes at the cost of increased complexity when calculating the reliability of systems. As such, methods to increase the interpretability of the system and allow for appropriate approximations have been considered and researched. In this thesis, a novel classification approach for transitions in SMP has been defined and complemented with different conjectures and properties. A transition is classified as good or bad by comparing the reliability of the original system with the reliability of any perturbed system, for which the studied transition is more likely to occur. Cases are presented to illustrate the use of this classification technique. Multiple suggestions and conjectures for future work are also presented and discussed. / Markovprocesser har länge använts för att modellera säkerhetskritiska system. Med utvecklingen av autonoma fordon och deras ökade komplexitet, har dock markovprocesser visat sig vara otillräckliga exakta för tillförlitlighetsberäkningar. Därför har det funnits ett behov för en mer allmän stokastisk process, nämligen semi-markovprocessen (SMP). SMP tillåter generella fördelningar mellan tillstånd och kan användas för att modellera komplexa system med hög noggrannhet. Detta innebär dock en ökad komplexitet vid beräkningen av systemens tillförlitlighet. Metoder för att öka systemets tolkningsbarhet och möjliggöra lämpliga approximationer har därför övervägts och undersökts. I den här masteruppsatsen har en ny klassificeringsmetod för övergångar i SMP definierats och kompletteras med olika antaganden och egenskaper. En övergång klassificeras som antingen bra eller dålig genom en jämförelse av tillförlitligheten i det ursprungliga systemets och ett ändrat system, där den studerade övergången har högre sannolikhet att inträffa. Fallstudier presenteras för att exemplifiera användningen av denna klassificeringsteknik. Flera förslag och antaganden för framtida arbete presenteras och diskuteras också.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-322560 |
Date | January 2022 |
Creators | Fenoaltea, Francesco |
Publisher | KTH, Matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2022:312 |
Page generated in 0.0022 seconds