Return to search

A Markovian Approach to Financial Market Forecasting / En Markovisk ansats för finansiell marknadsprognostisering

This thesis aims to investigate the feasibility of using a Markovian approach toforecast short-term stock market movements. To assist traders in making soundtrading decisions, this study proposes a Markovian model using a selection ofthe latest closing prices. Assuming that each time step in the one-minute timeframe of the stock market is stochastically independent, the model eliminates theimpact of fundamental analysis and creates a feasible Markov model. The modeltreats the stock price’s movement as entirely randomly generated, which allowsfor a more simplified model that can be implemented with ease. The modelis intended to serve as a starting ground for more advanced technical tradingstrategies and act as useful guidance for a short-term trader when combinedwith other resources. The creation of the model involves Laplace smoothing toensure there are no zero-probabilities and calculating the steady-state probabilityvector of the smoothed matrix to determine the predicted direction of the nexttime step. The model will reset daily, reducing the impact of fundamental factorsoccurring outside trading hours and reducing the risk of carrying over bias fromprevious trading day. Any open positions will hence be closed at the end of theday. The study’s purpose is to research and test if a simple forecasting modelbased on Markov chains can serve as a useful tool for forecasting stock prices atshort time intervals. The result of the study shows that a Markov-based tradingstrategy is more profitable than a simple buy-and-hold strategy and that theprediction accuracy of the Markov model is relatively high. / Denna avhandling syftar till att undersöka möjligheten att använda en markoviskmetod för att förutsäga kortsiktiga rörelser på aktiemarknaden. För att hjälpaaktörer på aktiemarknaden att fatta välgrundade handelsbeslut föreslår dennastudie en markovisk modell för att förutsäga nästa stängningspris baserat påde senaste stängningspriserna. Modellen antar att varje tidssteg i ett en-minuts intervall på aktiemarknaden är stokastiskt oberoende, vilket eliminerarpåverkan från fundamental analys och skapar förutsättningen för en genomförbarmarkov-modell. Modellen behandlar aktieprisets rörelse som helt slumpmässigtgenererat, vilket möjliggör en mer förenklad modell som kan implementeraspå marknaden. Modellen är avsedd att tjäna som en utgångspunkt förmer avancerade tekniska handelsalgoritmer och fungera som en användbarvägledning för en akitehandlare med kort tidshorisont i kombination med andraresurser. Skapandet av modellen inkluderar använding av Laplace-jämning föratt säkerställa att det inte finns nollsannolikheter samt beräknandet av denstationära sannolikhetsvektorn för den jämnade matrisen i syfte att bestämmaden förutsedda riktningen för nästa tidssteg. Modellen kommer att återställasdagligen, vilket minskar påverkan från de fundamentala faktorer som inträffarutanför handelstiderna och ser till att bias inte överförs till nästa börsdag. Dettainnebär att alla öppna positioner stängs vid dagens slut. Studiens syfte är attforska och testa om en enkel prognosmodell baserad på Markovkedjor kan varaanvändbar som ett verktyg för att förutsäga aktiepriser vid korta tidsintervall.Resultatet från studien visar på att en markov-baserad trading strategi är merlönsam än en enkel köp-och-behåll strategi och att prediktionernas träffsäkerhetfrån en markov modell är relativt höga.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-342746
Date January 2023
CreatorsSun Wang, Kevin, Borin, William
PublisherKTH, Matematisk statistik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2023:242

Page generated in 0.0029 seconds