Return to search

An Approach for Incremental Semi-supervised SVM

In this paper we propose an approach for incremental learning of semi-supervised SVM. The proposed approach makes use of the locality of radial basis function kernels to do local and incremental training of semi-supervised support vector machines. The algorithm introduces a se- quential minimal optimization based implementation of the branch and bound technique for training semi-supervised SVM problems. The novelty of our approach lies in the in the introduction of incremental learning techniques to semisupervised SVMs.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:78844
Date11 May 2022
CreatorsEmara, Wael, Karnstedt, Mehmed Kantardzic Marcel, Sattler, Kai-Uwe, Habich, Dirk, Lehner, Wolfgang
PublisherIEEE
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish, German
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation978-0-7695-3019-2, 2375-9259, 10.1109/ICDMW.2007.106

Page generated in 0.0013 seconds