The development of microarray technology has provided an unprecedented wealth of data on gene expression in various tissue and cell types. Few studies have, however, taken full advantage of these data by selecting and then extensively characterising the functions of particular genes chosen from these microarray datasets. In this study, after analysing differentially-regulated genes revealed by microarray analysis of human mast cells activated via Fc??RI cross-linking, we chose two promising gene candidates for further research, A20 and Gem. Our group??s extensive gene expression database of major leukocytes showed that both A20 and Gem were up-regulated in other leukocyte types, and yet neither of these genes has been extensively explored in mast cells or in the immune system prior to our study. In order to investigate the first of these genes selected for further study, A20, we utilised both A20-deficient mast cells and mast cells in which A20 was over-expressed. Our findings establish for the first time that A20 is an important regulator of mast cell inflammatory responses to both LPS and Fc??RI cross-linking, and that it plays a novel role in mast cell proliferation. Our study of the second gene chosen for investigation, Gem, was conducted in a Gemdeficient mouse model developed by our group. In this study, we investigated the effect of Gem deficiency in two key immune cell types, macrophages and T-cells, complementing the work of a previous group member who investigated Gem deficiency in mast cells. Our results clearly exclude a role for Gem in macrophage and T-cell effector responses, and further establish that Gem is dispensable for in vivo inflammatory responses in models of delayed-type hypersensitivity and allergic airway inflammation. In addition to these findings, and given that the physiological role of Gem was not yet understood prior to our study, we extended our investigation to explore a potential function for Gem in the metabolic system. Using Gem-deficient mice, we found that Gem is necessary for insulin secretion from pancreatic islets. These findings confirm the potential for microarray expression data to reveal excellent gene candidates for further research and functional characterisation.
Identifer | oai:union.ndltd.org:ADTP/257532 |
Date | January 2008 |
Creators | Sisavanh, Mary, Biotechnology & biomolecular sciences, UNSW |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0016 seconds