Return to search

Nanoengineering plasmonic-based hybrid nanomaterials : towards smart soft materials for biomedical applications

Note sur les annexes : 7 documents en format mp4, « the nanoparticle tracking analysis (NTA) technique uses the properties of both light scattering and Brownian motion to extract information about the size and concentration of particles in suspension by employing microscopy techniques. Through the use of an objective lens and a camera, NTA is able to record videos of the scattered light produced by individual particles as they traverse a microchannel. » / Les matériaux souples stimulants dotés de propriétés hybrides présentent un grand intérêt dans les domaines de la biomédecine et de la santé, car ils permettent de développer de nouveaux actionneurs intelligents pour des applications telles que l'administration de médicaments, la cicatrisation des plaies et les plateformes de culture cellulaire in vitro. Les hydrogels thermosensibles, tels que l'hydrogel de poly(N-isopropylacrylamide) (pNIPAM), sont couramment utilisés comme matériaux souples en raison de leur biocompatibilité et de leur capacité à subir des modifications de leurs propriétés physiques et/ou chimiques en fonction de la température, par exemple un rétrécissement ou un gonflement volumétrique. L'incorporation de nanoparticules d'or plasmoniques dans le réseau d'hydrogel représente une excellente alternative pour déclencher localement et à distance le retrait volumétrique de l'hydrogel sous l'effet de la lumière. Les nanoparticules d'or supportant des résonances plasmoniques de surface localisées (LSPR) présentent des propriétés photothermiques exceptionnelles en raison de leur grande section d'extinction optique aux longueurs d'onde visibles et proches de l'infrarouge. Il est donc impératif de bien comprendre les paramètres qui influencent leur synthèse pour garantir la réussite de la mise en œuvre de ces nanomatériaux hybrides intelligents dans le domaine biomédical. Cette compréhension est essentielle pour développer des protocoles bien contrôlés et échelonnables avec des propriétés adaptées et des méthodes de fabrication simples, rentables et à grande échelle. L'objectif principal du travail présenté dans cette thèse était de développer un nanomatériau hybride à base plasmonique avec un comportement réversible et une réactivité élevée pour être utilisé comme actionneurs souples intelligents pilotés par la lumière dans des applications biomédicales. À cette fin, des microgels cœur-coquille Au-pNIPAM ont été choisis comme éléments constitutifs des matériaux hybrides sensibles à la lumière et synthétisés par polymérisation par précipitation avec ensemencement. Dans un premier temps, le rôle crucial des points de nucléation dans le processus de polymérisation a été étudié, montrant leur influence, indépendamment de la taille du noyau d'or, sur la modulation de paramètres importants pour la synthèse de microgels Au-pNIPAM, y compris le rendement d'encapsulation des noyaux d'or, la taille et la capacité de rétrécissement du nanomatériau. Deuxièmement, en exploitant le protocole de synthèse bien contrôlé et la stabilité colloïdale des microgels cœur-coquille Au-pNIPAM, une méthode simple basée sur la compression et les colloïdes a été développée pour fabriquer des films minces Au-pNIPAM photopolymérisables. Cette méthode a permis la fabrication de films homogènes, en termes de densité de noyaux d'or, de l'ordre du micron sur des substrats rigides et malléables. Grâce à l'utilisation de la lumière et de photomasques, le patronage des films Au-pNIPAM a permis la fabrication de microgels Au-pNIPAM anisotropes avec des rapports d'aspect largeur-hauteur élevés sur des substrats et des suspensions, ajoutant une nouvelle dimension à la méthode de fabrication mise au point. Enfin, pour démontrer les propriétés d'actionnement de la lumière du matériau hybride développé et en tirant parti des propriétés thermoplasmoniques collectives des nanoparticules d'or, des robots nageurs guidés par la lumière ont été fabriqués. Sous exposition à la lumière, la trajectoire et la rotation des robots nageurs à l'interface air/eau ont été contrôlées avec précision grâce à l'effet Marangoni induit par la lumière. / Stimuli-responsive soft materials possessing hybrid properties are of great interest in the biomedical and healthcare fields to develop novel smart actuators for applications in, for instance, drug delivery, wound healing, and in-vitro cell culture platforms. Thermo-responsive hydrogels, such as the poly(N-isopropylacrylamide) (pNIPAM) hydrogel, are commonly used as soft materials owing to their biocompatibility and capacity to experience changes in their physical and/or chemical properties as a function of temperature, e.g., volumetric shrinkage. Incorporating plasmonic gold nanoparticles within the hydrogel network represents an excellent alternative to locally and remotely trigger the volumetric shrinkage of the hydrogel upon light illumination. Gold nanoparticles supporting localized surface plasmon resonances (LSPR) exhibit exceptional photothermal properties due to their large optical extinction cross-section at visible and near-infrared wavelengths. A comprehensive understanding of the parameters that influence their syntheses is imperative to ensure the successful implementation of these smart hybrid nanomaterials in the biomedical field. This understanding is pivotal in developing well-controlled and scalable protocols with tailored properties and simple, cost-effective, and large-scale fabrication methods. The main objective of the work presented in this thesis was to develop a plasmonic-based hybrid nanomaterial with reversible behavior and high responsivity to be used as light-driven smart soft actuators in biomedical applications. To this, Au-pNIPAM core-shell microgels were chosen as building blocks of light-responsive hybrid materials and synthesized through seeded precipitation polymerization. At first, the crucial role of nucleation points in the polymerization process was studied, showing their influence - regardless of gold core size - on the modulation of significant parameters for the synthesis of Au-pNIPAM core-shell microgels, including encapsulation yield of gold cores, size, and shrinking capacity of the nanomaterial. Secondly, by exploiting the well-controlled synthesis protocol and colloidal stability of Au-pNIPAM core-shell microgels, a simple compression- and colloid-based method was developed to fabricate photopolymerizable thin Au-pNIPAM films. This method allowed the fabrication of homogeneous films - in terms of gold core number density - in the micron-size range onto both rigid and malleable substrates. Through the use of light and photomasks, the patterning of Au-pNIPAM films permitted the fabrication of anisotropic Au-pNIPAM microgels with high width-to-height aspect rations on substrates and suspension, adding a new dimension to the developed fabrication method. Finally, to demonstrate the light-actuation properties of the developed hybrid material and by leveraging the collective thermoplasmonic properties of gold nanoparticles, light-guided swimming robots of millimeter-scale were fabricated. Under light exposure, the trajectory and rotation of swimming robots at the air/water interface were precisely controlled due to the light-induced Marangoni effect.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/143489
Date10 May 2024
CreatorsSepúlveda, Adolfo
ContributorsBoudreau, Denis, Marette, André
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxiv, 153 pages), application/pdf, application/zip, text/plain
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0021 seconds