Les composants du circuit primaire des réacteurs nucléaires à eau sous pression (REP) subissent une corrosion généralisée entraînant le relâchement d'espèces solubles dans le fluide primaire (principalement Fe, Ni, Cr, Mn, Co). Sous l'effet de la convection du fluide, ces espèces sont entraînées dans le circuit primaire. Une partie de ces espèces peut précipiter sur les surfaces du combustible et être activée sous l'effet du flux neutronique régnant dans cette région. Ce dépôt de produits de corrosion peut, sous l'effet des forces hydrodynamiques du fluide primaire, être érodé (ou bien dissous si les conditions thermo-chimiques le permettent). Ces espèces activées (principalement du 58Co, 60Co, 51Cr et 54Mn), sous l'effet de la convection vont se retrouver disséminées dans l'ensemble du circuit primaire où elles pourront se redéposer (ou bien précipiter) sur les différents composants et ainsi contaminer l'ensemble du circuit primaire. Au cours d'un cycle de fonctionnement normal dans un REP EDF, l'activité du fluide dans le circuit primaire est relativement constante (généralement de l'ordre de 10-20 MBq.m-3 en 58Co). Cependant, lors de certains cycles de fonctionnement (en fonction de la gestion de combustible), notamment on observe des montées d'activités volumiques importantes en 58Co et en 51Cr pouvant atteindre une centaine de fois celles observées habituellement. Ces montées d'activités volumiques sont dues à l'établissement dans les régions les plus "chaudes" des assemblages de combustible d'un régime d'ébullition nucléée. L'ébullition peut dans certains cas multiplier par un facteur 10 à 100 l'épaisseur de dépôt formé sur le combustible conduisant ainsi à un transfert de masse plus important sous forme particulaire entre le dépôt et le fluide primaire du fait de l'érosion. Une modélisation des mécanismes de transfert de masse entre le fluide primaire et le dépôt sur ces régions "chaudes" du combustible en régime d'ébullition nucléée et les impacts sur la contamination du circuit primaire sont décrits dans ce mémoire. L'ébullition à la surface du dépôt ou bien dans le dépôt lui-même provoque un enrichissement à la paroi en espèces ioniques pouvant entraîner une précipitation plus importante ou bien modifier le comportement d'une espèce d'un régime de dissolution à un régime de précipitation ; le dépôt de particules turbulent et inertiel est lui aussi favorisé. La vaporisation du fluide à la paroi ainsi que la formation des bulles elles-mêmes entraînent aussi un dépôt et une précipitation plus importants. La prise en compte de ces mécanismes de transfert de masse dans le code OSCAR (Outil de Simulation de la ContAmination en Réacteur), développé au sein du Laboratoire de Modélisation des interactions et Transferts en Réacteur au CEA, conduit à une bonne reproduction des résultats expérimentaux issus du retour d'expérience des centrales françaises tant au niveau des dépôts formés dans les régions avec ébullition que des activités volumiques.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01072543 |
Date | 10 September 2013 |
Creators | Ferrer, Alexandre |
Publisher | Université de Strasbourg |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds