Return to search

Contributions au partitionnement de graphes parallèle multi-niveaux

Le partitionnement de graphes est une technique employée dans de nombreux domaines scientifiques. Il est utilisé pour résoudre des problèmes d'optimisation, modélisés sous la forme de graphes valués ou non, et pour lesquels la recherche de bonnes solutions équivaut au calcul, éventuellement récursivement, de coupes sommet ou arête les plus petites possible et qui équilibrent les tailles des sous-parties séparées. La plupart des méthodes actuelles de partitionnement de graphes mettent en oeuvre un schéma multi-niveaux, dans lequel le graphe à partitionner est successivement contracté pour former une famille de graphes de plus en plus petits, mais de structure topologique similaire, de sorte qu'une partition initiale calculée sur le plus petit graphe puisse être propagée de proche en proche, par prolongations et raffinements successifs, jusqu'à obtenir un partitionnement du graphe initial. Du fait de l'augmentation croissante de la taille des problèmes à résoudre, ceux-ci ne peuvent plus être traités de façon séquentielle sur un unique ordinateur. Il est donc nécessaire de concevoir des algorithmes parallèles de partitionnement de graphes, aptes à traiter des graphes à plusieurs milliards de sommets distribués sur plusieurs milliers de processeurs. Plusieurs auteurs s'étaient déjà attelés à cette tâche, mais la performance des algorithmes proposés, ou la qualité des solutions produites, se dégradent lorsque le nombre de processeurs augmente. Ce mémoire présente les travaux réalisées au sein du projet PT-Scotch sur la conception d'algorithmes efficaces et robustes pour la parallélisation du schéma multi-niveaux. Il se concentre en particulier sur les phases de contraction et de raffinement, qui sont les plus critiques en termes de performance et de qualité des solutions produites. Il propose un algorithme parallèle probabiliste d'appariement, ainsi qu'un ensemble de méthodes permettant de réduire l'espace des solutions au cours la phase de raffinement et facilitant l'usage de méthodes globales, qui passent mieux à l'échelle mais sont en général bien plus coûteuses que les algorithmes d'optimisation locale habituellement mis en oeuvre dans le cas séquentiel.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00540581
Date03 December 2009
CreatorsPellegrini, François
PublisherUniversité Sciences et Technologies - Bordeaux I
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
Typehabilitation ࠤiriger des recherches

Page generated in 0.0017 seconds