Return to search

Asymptotiques et fluctuations des plus grandes valeurs propres de matrices de covariance empirique associées à des processus stationnaires à longue mémoire / Asymptotics and fluctuations of largest eigenvalues of empirical covariance matrices associated with long memory stationary processes

Les grandes matrices de covariance constituent certainement l’un des modèles les plus utiles pour les applications en statistiques en grande dimension, en communication numérique, en biologie mathématique, en finance, etc. Les travaux de Marcenko et Pastur (1967) ont permis de décrire le comportement asymptotique de la mesure spectrale de telles matrices formées à partir de N copies indépendantes de n observations d’une suite de variables aléatoires iid et sa convergence vers une distribution de probabilité déterministe lorsque N et n convergent vers l’infini à la même vitesse. Plus récemment, Merlevède et Peligrad (2016) ont démontré que dans le cas de grandes matrices de covariance issues de copies indépendantes d’observations d’un processus strictement stationnaire centré, de carré intégrable et satisfaisant des conditions faibles de régularité, presque sûrement, la distribution spectrale empirique convergeait étroitement vers une distribution non aléatoire ne dépendant que de la densité spectrale du processus sous-jacent. En particulier, si la densité spectrale est continue et bornée (ce qui est le cas des processus linéaires dont les coefficients sont absolument sommables), alors la distribution spectrale limite a un support compact. Par contre si le processus stationnaire exhibe de la longue mémoire (en particulier si les covariances ne sont pas absolument sommables), le support de la loi limite n'est plus compact et des études plus fines du comportement des valeurs propres sont alors nécessaires. Ainsi, cette thèse porte essentiellement sur l’étude des asymptotiques et des fluctuations des plus grandes valeurs propres de grandes matrices de covariance associées à des processus stationnaires à longue mémoire. Dans le cas où le processus stationnaire sous-jacent est Gaussien, l’étude peut être simplifiée via un modèle linéaire dont la matrice de covariance de population sous-jacente est une matrice de Toeplitz hermitienne. On montrera ainsi que dans le cas de processus stationnaires gaussiens à longue mémoire, les fluctuations des plus grandes valeurs propres de la grande matrice de covariance empirique convenablement renormalisées sont gaussiennes. Ce comportement indique une différence significative par rapport aux grandes matrices de covariance empirique issues de processus à courte mémoire, pour lesquelles les fluctuations de la plus grande valeur propre convenablement renormalisée suivent asymptotiquement la loi de Tracy-Widom. Pour démontrer notre résultat de fluctuations gaussiennes, en plus des techniques usuelles de matrices aléatoires, une étude fine du comportement des valeurs propres et vecteurs propres de la matrice de Toeplitz sous-jacente est nécessaire. On montre en particulier que dans le cas de la longue mémoire, les m plus grandes valeurs propres de la matrice de Toeplitz convergent vers l’infini et satisfont une propriété de type « trou spectral multiple ». Par ailleurs, on démontre une propriété de délocalisation de leurs vecteurs propres associés. Dans cette thèse, on s’intéresse également à l’universalité de nos résultats dans le cas du modèle simplifié ainsi qu’au cas de grandes matrices de covariance lorsque les matrices de Toeplitz sont remplacées par des matrices diagonales par blocs / Large covariance matrices play a fundamental role in the multivariate analysis and high-dimensional statistics. Since the pioneer’s works of Marcenko and Pastur (1967), the asymptotic behavior of the spectral measure of such matrices associated with N independent copies of n observations of a sequence of iid random variables is known: almost surely, it converges in distribution to a deterministic law when N and n tend to infinity at the same rate. More recently, Merlevède and Peligrad (2016) have proved that in the case of large covariance matrices associated with independent copies of observations of a strictly stationary centered process which is square integrable and satisfies some weak regularity assumptions, almost surely, the empirical spectral distribution converges weakly to a nonrandom distribution depending only on the spectral density of the underlying process. In particular, if the spectral density is continuous and bounded (which is the case for linear processes with absolutely summable coefficients), the limiting spectral distribution has a compact support. However, if the underlying stationary process exhibits long memory, the support of the limiting distribution is not compact anymore and studying the limiting behavior of the eigenvalues and eigenvectors of the associated large covariance matrices can give more information on the underlying process. This thesis is in this direction and aims at studying the asymptotics and the fluctuations of the largest eigenvalues of large covariance matrices associated with stationary processes exhibiting long memory. In the case where the underlying stationary process is Gaussian, the study can be simplified by a linear model whose underlying population covariance matrix is a Hermitian Toeplitz matrix. In the case of stationary Gaussian processes exhibiting long memory, we then show that the fluctuations of the largest eigenvalues suitably renormalized are Gaussian. This limiting behavior shows a difference compared to the one when large covariance matrices associated with short memory processes are considered. Indeed in this last case, the fluctuations of the largest eigenvalues suitably renormalized follow asymptotically the Tracy-Widom law. To prove our results on Gaussian fluctuations, additionally to usual techniques developed in random matrices analysis, a deep study of the eigenvalues and eigenvectors behavior of the underlying Toeplitz matrix is necessary. In particular, we show that in the case of long memory, the largest eigenvalues of the Toeplitz matrix converge to infinity and satisfy a property of “multiple spectral gaps”. Moreover, we prove a delocalization property of their associated eigenvectors. In this thesis, we are also interested in the universality of our results in the case of the simplified model and also in the case of large covariance matrices when the Toeplitz matrices are replaced by bloc diagonal matrices

Identiferoai:union.ndltd.org:theses.fr/2018PESC1131
Date10 December 2018
CreatorsTian, Peng
ContributorsParis Est, Merlevede, Florence, Najim, Jamal
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds