Malignant brain tumors are among the deadliest of human cancers. Despit recent advancements in conventional therapies, glioblastomas remain incurable, largel y due to their ability to invade surrounding tissue. Matrix metalloproteinases are thought to contribute to the invaseive phenotype of human gliomas. Absent in normal brain, matrix metalloproteinase-1 (MMP-1) has been shown to be present in gliomas, and in particular in glioblastoma multiforme (GBM). To begin to examine the role of MMP-1 in these tumore, two human glioma cell lines were stably transfected with MMP-1 cDNA. Confirmation of MMP-1 over-expression in these cells was achieved through real-time PCR and Western blot analysis. The functional consequences of MMP-1 over-expression were analyzed using a collagen type-I invasion assay along with clonogenic and ATP viability assays. Data presented demonstrate that MMP-1 over-expressing cells were more invasive in both cell types and interestingly more clonogenic in on of the glioma cell lines, supporting a possible role for MMP-1 in glioma growth and invasion.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-1777 |
Date | 01 January 2006 |
Creators | Mullet, Emily |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0017 seconds