Return to search

Fully Discrete Wavelet Galerkin Schemes

The present paper is intended to give a survey of the developments of the wavelet Galerkin boundary element method. Using appropriate wavelet bases for the discretization of boundary integral operators yields numerically sparse system matrices. These system matrices can be compressed to O(N_j) nonzero matrix entries without loss of accuracy of the underlying Galerkin scheme. Herein, O(N_j) denotes the number of unknowns. As we show in the present paper, the assembly of the compressed system matrix can be performed within optimal complexity. By numerical experiments we provide examples which corroborate the theory.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:18483
Date04 April 2006
CreatorsHarbrecht, Helmut, Konik, Michael, Schneider, Reinhold
PublisherTechnische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint, info:eu-repo/semantics/preprint, doc-type:Text
SourcePreprintreihe des Chemnitzer SFB 393, 02-03
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0015 seconds